Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T01:03:08.787Z Has data issue: false hasContentIssue false

Expanded Use of the Rietveld Method in Studies of Phase Abundance in Multiphase Mixtures*

Published online by Cambridge University Press:  10 January 2013

R.J. Hill
Affiliation:
CSIRO Division of Mineral Products, P.O. Box 124, Port Melbourne, Victoria, 3207, Australia

Abstract

Simple relationships exist between the individual phase scale factors derived from Rietveld analysis of multiphase mixtures and (i) the ‘reference intensity ratio’ used in traditional methods of discrete-peak phase analysis, (ii) the phase abundance itself and (iii) the relative pattern intensities in simulated powder patterns. These relationships are shown to follow naturally from the fundamental integrated-intensity phase-analysis equations provided in standard texts. In the event that preferred orientation, crystallinity, extinction and/or microabsorption cannot be adequately incorporated into the Rietveld models for individual phases, it is demonstrated that the Rietveld ab initio ‘pattern intensity constants’ can be scaled/calibrated experimentally, as in other whole-pattern methods of analysis, while retaining all the advantages of the Rietveld method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahtee, M., Nurmela, M., Suortti, P. & Järvinen, M. (1989). J. Appl. Crystallogr. 22, 261268.CrossRefGoogle Scholar
Albinati, A. & Willis, B.T.M. (1982). J. Appl. Crystallogr. 15, 361374.CrossRefGoogle Scholar
Bish, D.L. & Howard, S.A. (1988). J. Appl. Crystallogr. 21, 8691.CrossRefGoogle Scholar
Brindley, G.W. (1945). Phil. Mag. 36, 347369.CrossRefGoogle Scholar
Catlow, C.R.A. (1986). Editor, High Resolution Powder Diffraction, Mat. Sci. Forum, Volume 9, Proceedings of a Study Weekend, Daresbury Laboratory, March 1986.CrossRefGoogle Scholar
Cheetham, A.K. & Taylor, J.C. (1977). J. Solid State Chem. 21, 253275CrossRefGoogle Scholar
Chung, F.H. (1974). J. Appl. Crystallogr. 7, 519–525 and 526531.CrossRefGoogle Scholar
Chung, F.H. (1975). J. Appl. Crystallogr. 8, 1719.CrossRefGoogle Scholar
Cline, J.P. & Snyder, R.L. (1982). Adv. X-ray Anal. 26, 111117.Google Scholar
Cline, J.P. & Snyder, R.L. (1987). Adv. X-ray Anal. 30, 447456.Google Scholar
Dollase, W.A. (1986). J. Appl. Crystallogr. 19, 267272.CrossRefGoogle Scholar
Herman, H. & Ermrich, M. (1989). Pow. Diff. 4, 189195.CrossRefGoogle Scholar
Hewat, A.W. (1986). Chemica Scripta 26A, 119130.Google Scholar
Hill, R.J. (1982). Mat. Res. Bull. 17, 769784.CrossRefGoogle Scholar
Hill, R.J. (1983). J. Power Sources 9, 5571.CrossRefGoogle Scholar
Hill, R.J. (1990). In Powder Diffraction, Proceedings of the Satellite Meeting of the XVth Congress of the IUCr, Toulouse, France, July 16–19, 1990, Abstract V-L2, pp. 267268.Google Scholar
Hill, R.J., Hartshorn, A.J. & Houchin, M.R. (1988). Mat. Sci. Forum 34–36, 153157.Google Scholar
Hill, R.J. & Howard, C.J. (1986). A Computer Program for Rietveld Analysis of Fixed Wavelength X-ray and Neutron Powder Diffraction Patterns. Aust. Atomic Energy Commission (now ANSTO) Report No. M112. Lucas Heights Res. Labs, NSW, Australia.Google Scholar
Hill, R.J. & Howard, C.J. (1987). J. Appl. Crystallogr. 20, 467474.CrossRefGoogle Scholar
Hill, R.J., Howard, C.J. & Reichert, B.E. (1988). Mat. Sci. Forum 34–36, 159163.Google Scholar
Hill, R.J. & Madsen, I.C. (1987). Pow Diff. 2, 146162.CrossRefGoogle Scholar
Hill, R.J., Rand, D.A.J. & Woods, R. (1987). In, Pearce, L.J. (Ed.) Power Sources 11: Research and Development in Non-Mechanical Electrical Power Sources, Proc: 15th Internat. Power Sources Symp., Brighton, UK, Sept. 1986 (Symposium Committee, Leatherhead, UK, 1987) pp. 103126.Google Scholar
Howard, C.J., Hill, R.J. & Sufi, M.A.M. (1988). Chemistry in Australia, Oct. 1988, 367369.Google Scholar
Hubbard, C.R., Evans, E.H. & Smith, D.K. (1976). J. Appl. Crystallogr. 9, 169174.CrossRefGoogle Scholar
Hubbard, C.R. & Smith, D.K. (1977). Adv. X-ray Anal. 20, 2739.Google Scholar
Hubbard, C.R. & Snyder, R.L. (1988). Pow. Diff. 3, 7477.CrossRefGoogle Scholar
Izumi, F. (1985). Nippon, Kessho Gakkaishi (J. Crystallogr. Soc. Japan), 27, 2331.CrossRefGoogle Scholar
Jahanbagloo, I.C. & Zoltai, T. (1968). Anal. Chem. 40, 7391741.CrossRefGoogle Scholar
Kisi, E.H., Howard, C.J. & Hill, R.J. (1989). J. Am. Ceram. Soc. 72, 17571760.CrossRefGoogle Scholar
Klug, H.P. & Alexander, L.E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, p 534 and p 549. New York: Wiley.Google Scholar
Larson, A.C. & Von Dreele, R.B. (1988). GSAS Generalized Structure Analysis System Manual, LANSCE, MS-H805, Los Alamos National Laboratory, Los Alamos, USA.Google Scholar
Madsen, I.C., Flann, R.C.A., Finney, R., Frost, M.T. & Wilson, B.W. (1990). Abstracts Volume, AXAA-90, the Eighth Australian Schools and Conference on X-ray Analysis and Surface Analysis, Univ. Melbourne, Victoria, 11-16 February, 1990.Google Scholar
Malmros, G. & Thomas, J.O. (1977). J. Appl. Crystallogr. 10, 711.CrossRefGoogle Scholar
March, A. (1932). Zeit. Kristallogr. 81, 285297.CrossRefGoogle Scholar
McCarthy, G.J., Gehringer, R.C., Smith, D.K., Injaian, V.M., Pfoertsch, D.E. & Kabel, R.L. (1981). Adv. X-ray Anal. 24, 253264.Google Scholar
O'Connor, B.H., Deyu, L., Jordan, B., Raven, M.D. & Fazey, P.G. (1990). Adv. X-ray Analysis, 33, 269275.Google Scholar
O'Connor, B.H. & Raven, M.D. (1988). Pow. Diff. 3, 26.CrossRefGoogle Scholar
Richardson, J.W. Jr., Pluth, J.J. & Smith, J.V. (1988). Acta Crystallogr. B44, 367373.CrossRefGoogle Scholar
Rietveld, H.M. (1969). J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Sabine, T.M. (1988). Acta Crystallogr. A44, 368373.CrossRefGoogle Scholar
Sabine, T.M., Von Dreele, R.B. & Jørgensen, J.-E. (1988). Acta Crystallogr. A44, 374379CrossRefGoogle Scholar
Smith, D.K., Johnson, G.G. Jr. & Ruud, C.O. (1986). Adv. X-ray Anal. 29, 217224.Google Scholar
Smith, D.K., Johnson, G.G. Jr., Scheible, A., Wims, A.M., Johnson, J.L. & Ullmann, G. (1987). Pow. Diff. 2, 7377.CrossRefGoogle Scholar
Snyder, R.L. & Bish, D.L. (1989). In, Ribbe, P.H. (Ed.) Modern Powder Diffraction Reviews in Mineralogy, Vol. 20, Mineralogical Society of America, Chapter 5, pp. 101144.CrossRefGoogle Scholar
Taylor, J.C. (1985). Aust. J. Physics, 38, 519538.CrossRefGoogle Scholar
Visser, J.W., & De Wolff, P.M. (1964). Absolute Intensities. Report 641.109, Technisch Physische Dienst, Delft, Netherlands.Google Scholar
Weiss, Z., Krajícek, J., Smrcok, L. & Fiala, J. (1983). J. Appl. Cryslallogr. 16, 493497.CrossRefGoogle Scholar
Werner, P.-E., Salome, S., Malmros, G. & Thomas, J.O. (1979). J. Appl. Crystallogr. 12, 107109.CrossRefGoogle Scholar
Wiles, D.B. & Young, R.A. (1981). J. Appl. Crystallogr. 14, 149151.CrossRefGoogle Scholar