Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:04:36.389Z Has data issue: false hasContentIssue false

Ex-oxalate magnesium oxide, a strain-free nanopowder studied with diffraction line profile analysis

Published online by Cambridge University Press:  01 March 2012

Nathalie Audebrand
Affiliation:
Sciences Chimiques de Rennes (UMR CNRS 6226), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
Christine Bourgel
Affiliation:
Sciences Chimiques de Rennes (UMR CNRS 6226), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
Daniel Louër
Affiliation:
Sciences Chimiques de Rennes (UMR CNRS 6226), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France

Abstract

An analysis of the microstructure of nanocrystalline magnesium oxide produced by thermal decomposition of magnesium oxalate, in the temperature range 500 °C–1200 °C, is described. The study is based on diffraction line broadening analysis carried out with the integral breadth (Langford) and Fourier methods, combined with the pattern decomposition technique. Additionally, the whole pattern matching method is also applied. No marked line broadening anisotropy is observed in the patterns. It is shown that the nanopowders are characterized by minimal strain and that crystallites have an average spherical shape. Volume-weighted and area-weighted apparent sizes are in the ranges 98–480 Å and 72–282 Å, respectively, within the temperature range considered. The results obtained from line broadening analysis are compared to those observed with scanning electron microscopy and surface area measurements. A satisfactory agreement is found between sizes derived from the different techniques.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audebrand, N., Auffrédic, J.-P., and Louër, D. (1998). “X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained form thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties,” Chem. Mater. CMATEX 10.1021/cm980132f 10, 24502461.CrossRefGoogle Scholar
Audebrand, N., Auffrédic, J.-P., and Louër, D. (2000). “An X-ray powder diffraction study of the microstructure and growth kinetics of nanoscale crystallites obtained form hydrated cerium oxides,” Chem. Mater. CMATEX 10.1021/cm001013e 12, 17911799.CrossRefGoogle Scholar
Audebrand, N. and Louër, D. (2004). “The microstructure of nanocrystalline powders from line profile analysis,” Mater. Sci. Forum MSFOEP 443–444, 7176.CrossRefGoogle Scholar
Audebrand, N., Raite, S., and Louër, D. (2003). “The layer crystal structure of [In2(C2O4)3(H2O)3]∙7H2O and microstructure of nanocrystalline In2O3 obtained from thermal decomposition,” Solid State Sci. SSSCFJ 10.1016/S1293-2558(03)00084-0 5, 783794.CrossRefGoogle Scholar
Auffrédic, J.-P., Boultif, A., Langford, J. I., and Louër, D. (1995). “Early stages of crystallite growth of ZnO obtained from an oxalate precursor,” J. Am. Ceram. Soc. JACTAW 10.1111/j.1151-2916.1995.tb08803.x 78, 323328.CrossRefGoogle Scholar
Auffrédic, J. P. and Louër, D. (1987). “Controlled microstructural properties of zinc oxide powder formed by the thermal decomposition of zinc hydroxynitrate,” React. Solids RESOED 4, 105115.CrossRefGoogle Scholar
Balzar, D. (1999). “Voigt function model in diffraction-line broadening analysis,” in Defect and Microstructure Analysis by Diffraction, edited by Snyder, R. L., Fiala, J., and Bunge, H. J. (IUCr/OUP, Oxford), pp. 94126.Google Scholar
Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Le Bail, A., Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W., and Toby, B. H. (2004). “Size strain line broadening analysis of the ceria round robin sample,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889804022551 37, 911924.CrossRefGoogle Scholar
Balzar, D. and Popovic, S. (1996). “Reliability of the simplified integral-breadth methods in diffraction line-broadening analysis,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889895008478 29, 1623.CrossRefGoogle Scholar
Bertaut, E. F. (1950). “Raies de Debye-Scherrer et répartition des dimensions des domaines de Bragg dans les poudres polycristallines,” Acta Crystallogr. ACCRA9 10.1107/S0365110X50000045 3, 1418.CrossRefGoogle Scholar
Bertaut, E. F. (1952). “Sur la correction de la transformée de Fourier d’une raie de Debye-Scherrer dans la mesure de dimensions cristallines,” Acta Crystallogr. ACCRA9 5, 117121.CrossRefGoogle Scholar
Brunauer, S., Emmett, P. H., and Teller, E. (1938). “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. JACSAT 10.1021/ja01269a023 60, 309319.CrossRefGoogle Scholar
Chaix-Pluchery, O., Bouillot, J., Ciosmak, D., Niepce, J. C., and Freund, F. (1983). “Calcium hydroxide dehydration early precursor states,” J. Solid State Chem. JSSCBI 50, 247255.CrossRefGoogle Scholar
Delhez, R., de Keijser, Th. H., Langford, J. I., Louër, D., Mittemeijer, E. J., and Sonneveld, E. J. (1993). “Crystal imperfection broadening and peak shape in the Rietveld method,” in The Rietveld Method, edited by Young, R. A. (IUCr/OUP, Oxford), pp. 132166.CrossRefGoogle Scholar
Delhez, R., de Keijser, Th. H., Mittemeijer, E. J., and Langford, J. I. (1988). “Size and strain parameters from peak profiles: sense and nonsense,” Aust. J. Phys. AUJPAS 41, 213227.CrossRefGoogle Scholar
Dumas, P., Ea, N., Niepce, J. C., and Watelle, G. (1979). “The influence of experimental conditions on the size and shape of crystallites produced by a solid state reaction. Case of Cd(OH)2 decomposition into CdO,” J. Solid State Chem. JSSCBI 27, 317327.CrossRefGoogle Scholar
Guilliatt, I. F. and Brett, N. H. (1970). “X-ray line broadening as a measure of crystallite size in oxide powders,” Philos. Mag. PHMAA4 21, 671680.CrossRefGoogle Scholar
Guilliatt, I. F. and Brett, N. H. (1971). “Crystallite size and shape relationships in the product-precursor pair MgO–Mg(OH)2,” Philos. Mag. PHMAA4 183, 647653.CrossRefGoogle Scholar
Haluska, M. S., Dragomir, I. C., Sandhage, K. H., and Snyder, R. L. (2005). “X-ray diffraction analyses of 3D MgO-based replicas of diatom microshells synthesized by a low-temperature gas/solid displacement reaction,” Powder Diffr. PODIE2 10.1154/1.2135788 20, 306310.CrossRefGoogle Scholar
ICDD (2004). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073–3272.Google Scholar
Iwai, S.-I., Morikawa, H., Watanabe, T., and Aoki, H. (1970). “X-ray line-broadening analysis of active MgO,” J. Am. Ceram. Soc. JACTAW 53, 355356.CrossRefGoogle Scholar
Keijser de, Th. H., Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P. (1982). “Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889882012035 15, 308314.CrossRefGoogle Scholar
Langford, J. I. (1978). “A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889878012601 11, 1014.CrossRefGoogle Scholar
Langford, J. I. (1992). “The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition,” in Accuracy in Powder Diffraction II, edited by Prince, E. and Stalick, J. K. Spec. Publ. 846 (NIST, Gaithersburg, MD), pp. 110126.Google Scholar
Langford, J. I., Boultif, A., Auffrédic, J. P., and Louër, D. (1993). “The use of pattern decomposition to study the combined X-ray diffraction effects of crystal size and stacking-faults in ex-oxalate zinc oxide,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889892007684 26, 2233.CrossRefGoogle Scholar
Langford, J. I., Delhez, R., De Keijser, Th. H., and Mittemeijer, E. J. (1988). “Profile analysis for microcrystalline properties by the Fourier and other methods,” Aust. J. Phys. AUJPAS 41, 173187.CrossRefGoogle Scholar
Langford, J. I. and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys. RPPHAG 10.1088/0034-4885/59/2/002 59, 131234.CrossRefGoogle Scholar
Le Bail, A. (1992). “Extracting structure factors from powder diffraction data by iterating full pattern profile fitting,” in Accuracy in Powder Diffraction II, edited by Prince, E. and Stalick, J. K., Spec. Publ. 846 (NIST, Gaithersburg, MD).Google Scholar
Le Bail, A. and Louër, D. (1978). “Smoothing and validity of crystallite-size distributions from X-ray line-profile analysis,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889878012662 11, 5055.CrossRefGoogle Scholar
Librant, Z. and Pampuch, R. (1968). “X-ray strain analysis of MgO crystallites derived from thermal decomposition of various magnesium compounds,” J. Am. Ceram. Soc. JACTAW 51, 109110.CrossRefGoogle Scholar
Louër, D. (1994). “Applications of profile analysis for micro-crystalline properties from total pattern fitting,” Adv. X-Ray Anal. AXRAAA 37, 2735.Google Scholar
Louër, D. (1999). “Use of pattern decomposition to study microstructure: practical aspects and applications,” in Defect and Microstructure Analysis by Diffraction, edited by Snyder, R. L., Fiala, J., and Bunge, H. J. (IUCr/OUP, Oxford), pp. 673697.Google Scholar
Louër, D. and Audebrand, N. (1999). “Profile fitting and diffraction line-broadening analysis,” Adv. X-Ray Anal. AXRAAA 41, 556565.Google Scholar
Louër, D., Auffrédic, J. P., Langford, J. I., Ciosmak, D., and Niepce, J. C. (1983). “A precise determination of the shape, size and distribution of size of crystallites in zinc oxide by X-ray line broadening analysis,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889883010237 16, 183191.CrossRefGoogle Scholar
Louër, D., Bataille, T., Roisnel, T., and Rodriguez-Carvajal, J. (2002). “A study of nanocrystalline yttrium oxide from diffraction-line-profile analysis: comparison of methods and crystallite growth,” Powder Diffr. PODIE2 10.1154/1.1523077 17, 262269.CrossRefGoogle Scholar
Louër, D. and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr. JACGAR 10.1107/S002188988800411X 21, 430437.CrossRefGoogle Scholar
Louër, D., Mesnier, M. T., and Niepce, J. C. (1984a). “X-ray diffraction line broadening of cadmium oxide produced by cadmium hydroxide decomposition,” J. Mater. Sci. JMTSAS 19, 716722.CrossRefGoogle Scholar
Louër, D., Vargas, R., and Auffrédic, J.-P. (1984b). “Morphological analysis and growth of crystallites during the annealing of ZnO,” J. Am. Ceram. Soc. JACTAW 67, 136141.CrossRefGoogle Scholar
Pampuch, R., Librant, Z., and Piekarczyk, J. (1975). “Texture and sinterability of MgO powders,” Ceram. Int. CINNDH 1, 1418.CrossRefGoogle Scholar
Pratapa, S. and O’Connor, B. (2002). “Development of MgO ceramic standards for X-ray and neutron line broadening assessments,” Adv. X-Ray Anal. AXRAAA 45, 4147.Google Scholar
Pratapa, S., O’Connor, B., and Hunter, B. (2002). “A comparative study of single-line and Rietveld strain-size evaluation procedures using MgO ceramics,” J. Appl. Crystallogr. JACGAR 35, 155162.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” Abstracts of the meeting Powder Diffraction, Toulouse, France, 127128. (FULLPROF is available at http://www-llb.cea.fr/fullweb/powder.htm).Google Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” IUCr-CPD NewsLetter 26, December 2001, 1219.Google Scholar
Rodriguez-Carvajal, J. and Roisnel, T. (2002). “Line broadening analysis using FULLPROF: determination of microstructural properties,” Mater. Sci. Forum MSFOEP 443–444, 123126.Google Scholar
Roisnel, T. and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum MSFOEP 378–381, 118123.CrossRefGoogle Scholar
Sprackling, M. T. (1976). The Plastic Deformation of Simple Ionic Crystals (Academic, London).Google Scholar
Stokes, A. R. (1948). “A numerical Fourier-analysis method for the correction of widths and shapes of lines on X-ray powder photographs,” Proc. Phys. Soc. London PPSOAU 10.1088/0959-5309/61/4/311 61, 382391.CrossRefGoogle Scholar
Stokes, A. R. and Wilson, A. J. C. (1944). “The diffraction of X-rays by distorted crystal aggregates-I,” Proc. Phys. Soc. London PPSOAU 56, 174181.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889887087090 20, 7983.CrossRefGoogle Scholar
Vanhoyland, G., Mondelaers, D., Van den Rul, H., D’Haen, J., Van Poucke, L. C., and Mullens, J. (2006). “Microstructural analysis of ZnO from different aqueous routes,” Z. Kristallogr. ZEKRDZ 23, 575580.CrossRefGoogle Scholar
Vargas, R., Louër, D., and Langford, J. I. (1983). “Diffraction line profiles and Scherrer constants for materials with hexagonal crystallites,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889883010924 16, 512518.CrossRefGoogle Scholar
Wagner, C. N. J. and Aqua, E. N. (1964). “Analysis of the broadening of powder pattern peaks from cold-worked face-centered and body-centered cubic metals,” Adv. X-Ray Anal. AXRAAA 7, 4665.Google Scholar
Warren, B. E. and Averbach, B. L. (1950). “The effect of cold-work distortion on X-ray patterns,” J. Appl. Phys. JAPIAU 10.1063/1.1699713 21, 595599.CrossRefGoogle Scholar
Warren, B. E. and Averbach, B. L. (1952). “The separation of cold-work distortion and particle size broadening in X-ray patterns,” J. Appl. Phys. JAPIAU 23, 497.CrossRefGoogle Scholar
Wilson, A. J. C. (1962). X-ray Optics, 2nd ed. (Methuen, London).Google Scholar
Young, R. A. (1993). “Introduction to the Rietveld method,” in The Rietveld Method, edited by Young, R. A. (IUCr/OUP, Oxford), pp. 138.CrossRefGoogle Scholar
Young, R. A. and Desai, P. (1989). “Crystallite size and microstrain indicators in Rietveld refinement,” Ark. Mat. AKMTAJ 10, 7190.Google Scholar
Young, R. A., Gerdes, R. G., and Wilson, A. J. C. (1967). “Propagation of some systematic errors in X-ray line profile analysis,” Acta Crystallogr. ACCRA9 10.1107/S0365110X67000271 22, 155162.CrossRefGoogle Scholar