Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T13:24:51.227Z Has data issue: false hasContentIssue false

Equal channel angular pressing processing routes and associated structure modification: a differential scanning calorimetry and X-ray line profile analysis

Published online by Cambridge University Press:  17 August 2012

A. Sarkar*
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
Satyam Suwas
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
D. Goran
Affiliation:
LEM3, Université Paul Verlaine de Metz, Ile du Saulcy, 57045 Metz Cedex 1, France
J.-J. Fundenberger
Affiliation:
LEM3, Université Paul Verlaine de Metz, Ile du Saulcy, 57045 Metz Cedex 1, France
L.S. Toth
Affiliation:
LEM3, Université Paul Verlaine de Metz, Ile du Saulcy, 57045 Metz Cedex 1, France
T. Grosdidier
Affiliation:
LEM3, Université Paul Verlaine de Metz, Ile du Saulcy, 57045 Metz Cedex 1, France
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The effectiveness of different routes of equal channel angular pressing (A, Bc, and C) is studied for commercially pure copper. The stored energy and the activation energy of recrystallization for the deformed samples were quantified using differential scanning calorimetry and X-ray diffraction line profile analysis. Results of the study revealed that the dislocation density and the stored energy are higher in the case of route Bc deformed sample. The activation energy for recrystallization is lower for route Bc.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, I. V., Islamgaliev, R. K., Valiev, R. Z., Zhu, Y. T., and LoweI, T. C. (1998). “Microstructures and properties of nanocomposites obtained through SPTS consolidation of powders,” Metall. Mater. Trans. A29, 22532260.CrossRefGoogle Scholar
Borbely, A., Dragomir, I., Ribarik, G., and Ungar, T. (2003). “Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals,” J. Appl. Cryst. 36, 160162.CrossRefGoogle Scholar
Cao, W. Q., Gu, C. F., Pereloma, E. V., and Davies, C. H. J. (2008). “Stored energy, vacancies and thermal stability of ultrafine grained copper,” Mater. Sci. Eng. A492, 7479.CrossRefGoogle Scholar
Dobatkin, S. V., Kopylov, V. I., Pippan, R., and Vasil'eva, O. V. (2004). “Formation of high-angle grain boundaries in iron upon cold deformation by equal-channel angular pressing,” Mater. Sci. Forum 467–470, 12771282.CrossRefGoogle Scholar
Dobatkin, S. V., Szpunar, J. A., Zhilyaev, A. P., Cho, J.-Y., and Kuznetsov, A. A. (2007). “Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper,” Mater. Sci. Eng. A462, 132138.CrossRefGoogle Scholar
Ferrasse, S., Hartwig, K. T., Goforth, R. E., and Segal, V. M. (1997). “Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion,” Metall. Mater. Trans. A28, 10471057.CrossRefGoogle Scholar
Grosdidier, T., Goran, D., Ji, G. and Llorca, N. (2010). “On the processing of hetero-nanostructured metals for improved strength/ductility balance by ECAE and SPS techniques,” J. Alloys Compd 504, S456S459.CrossRefGoogle Scholar
Grosdidier, T. and Llorca, N. (2010). “Processing dense hetero-nanostructured metallic materials for Improved strength/ductility balance through high strain deformation and electrical current assisted sintering (ECAS),” Mater. Sci. Forum 633–634, 559567.Google Scholar
Gubicza, J., Balogh, L., Hellmig, R. J., Estrin, Y., and Ungar, T. (2005). “Dislocation structure and crystallite size in severely deformed copper by X-ray peak profile analysis,” Mater. Sci. Eng. A400–401, 334338.CrossRefGoogle Scholar
Gubicza, J., Kassem, M., Ribárik, G., and Ungár, T. (2004). “The microstructure of mechanically alloyed Al–Mg determined by X-ray diffraction peak profile analysis,” Mater. Sci. Eng. A372, 115122.CrossRefGoogle Scholar
Gubicza, J., Ribárik, G., Goren-Muginstein, G. R., Rosen, A. R., and Ungar, T. (2001). “The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction,” Mater. Sci. Eng. A309–310, 6063.CrossRefGoogle Scholar
Kissinger, H. E. (1957). “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29, 17021706.CrossRefGoogle Scholar
Langdon, T. G., Furukawa, M., Nemoto, M., and Horita, Z. (2000). “Using equal-channel angular pressing for refining grain size,” JOM 52(4), 3033.CrossRefGoogle Scholar
Li, S., Gazder, A. A., Beyerlein, I. J., Pereloma, E. V., and Davies, C. H. J. (2006). “Effect of processing route on microstructure and texture development in equal channel angular extrusion of interstitial-free steel,” Acta Mater. 54, 10871100.CrossRefGoogle Scholar
Ma, E. (2003). “Instabilities and ductility of nanocrystalline and ultrafine-grained metals,” Scr. Mater. 49, 663668.CrossRefGoogle Scholar
Mathieu, J. P., Suwas, S., Eberhardt, A., Tóth, L. S., and Moll, P. (2006). “A new design for equal channel angular extrusion,” J. Mater. Process. Technol. 173, 2933.CrossRefGoogle Scholar
Oh-Ishi, K., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T. G. (1998). “Optimizing the rotation conditions for grain refinement in equal-channel angular pressing,” Metall. Mater. Trans. A29, 20112013.CrossRefGoogle Scholar
Ribárik, G., Ungár, T., and Gubicza, J. (2001). “MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions,” J. Appl. Cryst. 34, 669676.CrossRefGoogle Scholar
Schafler, E., Steiner, G., Korznikova, E., Kerber, M., and Zehetbauer, M. J. (2005). “Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis, calorimetry and electrical resistometry,” Mater. Sci. Eng. A410–411, 169173.CrossRefGoogle Scholar
Segal, V. M. (1995). “Materials processing by simple shear,” Mater. Sci. Eng. A 197, 157164.CrossRefGoogle Scholar
Skrotzki, W., Scheerbaum, N., Oertel, C.-G., Arruffat-Massion, R., Suwas, S., and Tóth, L. S. (2007). “Microstructure and texture gradient in copper deformed by equal channel angular pressing,” Acta Mater. 55, 20132024.CrossRefGoogle Scholar
Stolyarov, V. V., Zhu, Y. T., Alexandrov, I. V., Lowe, T. C., and Valiev, R. Z. (2001). “Influence of ECAP routes on the microstructure and properties of pure Ti,” Mater. Sci. Eng. A299, 5967.CrossRefGoogle Scholar
Stolyarov, V. V., Zhu, Y. T., Lowe, T. C., and Valiev, R. Z. (1999). “A two step SPD processing of ultrafine-grained titanium,” NanoStruct. Mater. 11, 947954.CrossRefGoogle Scholar
Stüwe, H. P. (2003). “Equivalent strains in severe plastic deformation,” Adv. Eng. Mater. 5, 291295.CrossRefGoogle Scholar
Suwas, S. and Kim, D.-I. (2007). “Annealing texture of ECAE processed copper,” Mater. Sci. Forum, 558–559, 13531358.CrossRefGoogle Scholar
Suwas, S., Arruffat Massion, R., Tóth, L. S., Fundenberger, J.-J., and Beausir, B. (2009). “Evolution of texture during equal channel angular extrusion of commercially pure aluminum: Experiments and simulations,” Mater. Sci. Eng. A520, 134146.CrossRefGoogle Scholar
Suwas, S., Arruffat Massion, R., Tóth, L. S., Fundenburger, J. J., Eberhardt, A., and Skrotzki, W. (2006). “Evolution of crystallographic texture during equal channel angular extrusion of copper: the role of material variables,” Metall. Mater. Trans. 37A, 739753.CrossRefGoogle Scholar
Suwas, S., Eberhardt, A., Tóth, L. S., Fundenberger, J. J., and Grosdidier, T. (2004). “A recrystallisation based investigation for efficiency of processing routes during equal channel angular extrusion,” Mater. Sci. Forum, 467–470, 13251332.CrossRefGoogle Scholar
Suwas, S., Tóth, L. S., Fundenberger, J.-J., and Eberhardt, A. (2005). “Texture evolution in commercially pure Al during equal channel angular extrusion (ECAE) as a function of processing routes,” Solid State Phenom., 105, 357362.CrossRefGoogle Scholar
Ungar, T. (2004). “Microstructural parameters from X-ray diffraction peak broadening,” Scr. Mater. 51, 777781.CrossRefGoogle Scholar
Ungar, T. and Borbely, A. (1996). “The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis,” Appl. Phys. Lett. 69, 31733175.CrossRefGoogle Scholar
Ungar, T. and Tichy, G. (1999). “The effect of dislocation contrast on X-ray line profiles in untextured polycrystals,” Phys. Status Solidi a 171, 425434.3.0.CO;2-W>CrossRefGoogle Scholar
Ungar, T., Dragomir, I., Revesz, A., and Borbely, A. (1999). “The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice,” J. Appl. Cryst. 32, 9921002.CrossRefGoogle Scholar
Wang, Y. M. and Ma, E. (2004). “Three strategies to achieve uniform tensile deformation in a nanostructured metal,” Acta Mater. 52, 16991709.CrossRefGoogle Scholar
Wang, Y. M., Chen, M. W., Zhou, F. H., and Ma, E. (2002). “High tensile ductility in a nanostructured metal,” Nature 419, 912915.CrossRefGoogle Scholar
Wilkens, M. (1970a). “Fundamental aspects of dislocation theory,” in NBS spl pub, II:317, edited by Simmons, J. A., de Wit, R., and Bullougs, R. (US Department of Commerce, Washington, DC), p. 1195.Google Scholar
Wilkens, M. (1970b). “The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles,” Phys. Status Solidi 2, 359363.CrossRefGoogle Scholar
Williamson, G. K. and Hall, W. H. (1952). “X-ray line broadening from filed aluminium and wolfram,” Acta Metal. 1, 2231.CrossRefGoogle Scholar
Valiev, R. Z. (1997). “Structure and mechanical properties of ultrafine-grained metals,” Mater. Sci. Eng. A 234–236, 5966.CrossRefGoogle Scholar
Valiev, R. Z., Islamgaliev, R. K., and Alexandrov, I. V. (2000). “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103189.CrossRefGoogle Scholar