Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T03:27:13.343Z Has data issue: false hasContentIssue false

Does Ordinary Portland Cement contain amorphous phase? A quantitative study using an external standard method

Published online by Cambridge University Press:  05 March 2012

D. Jansen*
Affiliation:
GeoZentrum Nordbayern, Mineralogy, University Erlangen-Nuremberg, Erlangen 91054, Germany
Ch. Stabler
Affiliation:
GeoZentrum Nordbayern, Mineralogy, University Erlangen-Nuremberg, Erlangen 91054, Germany
F. Goetz-Neunhoeffer
Affiliation:
GeoZentrum Nordbayern, Mineralogy, University Erlangen-Nuremberg, Erlangen 91054, Germany
S. Dittrich
Affiliation:
GeoZentrum Nordbayern, Mineralogy, University Erlangen-Nuremberg, Erlangen 91054, Germany
J. Neubauer
Affiliation:
GeoZentrum Nordbayern, Mineralogy, University Erlangen-Nuremberg, Erlangen 91054, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A suitable external standard method which was first described by O’Connor and Raven (1988) (“Application of the Rietveld refinement procedure in assaying powdered mixtures,” Powder Diffr. 3, 2–6) was used to determine the quantitative phase composition of a commonly used Ordinary Portland Cement (OPC). The method was also applied in order to determine amorphous contents in OPC. Also investigated were the impact of atomic displacement parameters and the microstrain on the calculated amorphous content. The investigations yielded evidence that said parameters do indeed exert an influence on the calculated amorphous content. On the basis of the data produced we can conclude that the method used is entirely to be recommended for the examination of OPC. No significant amorphous content could be proven in the OPC used.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G. W. (1945). “The effect of grain or particle size on x-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods,” Philos. Mag.PMHABF 36, 347369.CrossRefGoogle Scholar
Chung, F. H. (1974). “Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures,” J. Appl. Crystallogr.JACGAR 7, 526531.10.1107/S0021889874010387CrossRefGoogle Scholar
De La Torre, A. G. and Aranda, M. A. G. (2003). “Accuracy in Rietveld quantitative phase analysis of Portland cements,” J. Appl. Crystallogr.JACGAR 36, 11691176.10.1107/S002188980301375XCrossRefGoogle Scholar
De La Torre, A. G., Bruque, S., and Aranda, M. A. G. (2001). “Rietveld quantitative amorphous content analysis,” J. Appl. Crystallogr.JACGAR 34, 196202.10.1107/S0021889801002485CrossRefGoogle Scholar
De La Torre, A. G., Bruque, S., Campo, J., and Aranda, M. A. G. (2002). “The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analysis,” Cem. Concr. Res.CCNRAI 32, 13471356.10.1016/S0008-8846(02)00796-2CrossRefGoogle Scholar
Dinnebier, R. E. and Billinge, S. J. L. (2008). Powder Diffraction, Theory and Practice (The Royal Society of Chemistry, Cambridge).10.1039/9781847558237CrossRefGoogle Scholar
Fischer, R. X. and Tillmanns, E. (1988). “The equivalent isotropic displacement factor,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE 44, 775776.10.1107/S0108270187012745CrossRefGoogle Scholar
Gutteridge, W. A. (1979). “On the dissolution of the interstitial phases in Portland cement,” Cem. Concr. Res.CCNRAI 9, 319324.10.1016/0008-8846(79)90124-8CrossRefGoogle Scholar
Han, K. S., Glasser, F. P., and Gard, J. A. (1980). “Studies of the crystallization of the liquid phase in Portland clinker,” Cem. Concr. Res.CCNRAI 10, 443448.10.1016/0008-8846(80)90120-9CrossRefGoogle Scholar
Hermann, H. and Ermrich, M. (1989). “Microabsorption correction of X-ray intensities diffracted by multiphase powder specimens,” Powder Diffr.PODIE2 4, 189195.CrossRefGoogle Scholar
Hesse, Ch., Goetz-Neunhoeffer, F., Neubauer, J., Braeu, M., and Gaeberlein, P. (2009). “Quantitative in-situ X-ray diffraction analysis of early hydration of white cement,” Powder Diffr.PODIE2 24, 112115.10.1154/1.3120603CrossRefGoogle Scholar
Hill, R. J. and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr.JACGAR 20, 467474.10.1107/S0021889887086199CrossRefGoogle Scholar
Hubbard, C. R., Evans, E. H., and Smith, D. K. (1976). “The reference intensity ration I/Ic for computer simulated powder patterns,” J. Appl. Crystallogr.JACGAR 9, 169174.10.1107/S0021889876010807CrossRefGoogle Scholar
International Union for Crystallography. (2004). International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables, 3rd ed., edited by Prince, E. (Kluwer, Boston).Google Scholar
Jost, K. H., Ziemer, B., and Seydel, R. (1977). “Redetermination of the structure of β-dicalcium silicate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 33, 16961700.10.1107/S0567740877006918CrossRefGoogle Scholar
Jupe, A. C., Cockcroft, J. K., Barnes, P., Colston, S. L., Sankar, G., and Hall, C. (2001). “The site occupancy of Mg in the brownmillerite structure and its effect on hydration properties: An X-ray/neutron diffraction and EXAFS study,” J. Appl. Crystallogr.JACGAR 34, 5561.10.1107/S0021889800016095CrossRefGoogle Scholar
Kirfel, A. and Will, G. (1980). “Charge density in anhydrite CaSO4, from X-ray and neutron diffraction measurements,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 36, 28812890.10.1107/S0567740880010461CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. E. (1974). X-Ray Diffraction Procedures, 2nd ed. (Wiley, New York).Google Scholar
Kolesov, B. A., Geiger, C. A., and Armbruster, T. (2001). “The dynamic properties of zircon studied by single-crystal X-ray diffraction and Raman spectroscopy,” Eur. J. Mineral.EJMIER 13, 939948.10.1127/0935-1221/2001/0013-0939CrossRefGoogle Scholar
Le Page, Y. and Donnay, G. (1976). “Refinement of the crystal structure of low-quartz,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 32, 24562459.10.1107/S0567740876007966CrossRefGoogle Scholar
Le Saoût, G., Füllmann, T., Kocaba, V., and Scrivener, K. L. (2007). “Quantitative study of cementitious materials by X-ray diffraction. Rietveld analysis using an external standard,” Proceedings of the 12th ICCC, Montreal, Canada, 08–13 July 2007.Google Scholar
Le Saoût, G., Kocaba, V., and Scrivener, K. (2011). “Application of the Rietveld method to the analysis of anhydrous cement,” Cem. Concr. Res.CCNRAI 41, 133148.10.1016/j.cemconres.2010.10.003CrossRefGoogle Scholar
Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D., and Lwin, T. (2001). “Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on quantitative phase analysis: Samples 1a to 1h,” J. Appl. Crystallogr.JACGAR 34, 409426.10.1107/S0021889801007476CrossRefGoogle Scholar
Maki, I. (1979). “Mechanism of glass formation in Portland cement clinker,” Cem. Concr. Res.CCNRAI 9, 757763.10.1016/0008-8846(79)90071-1CrossRefGoogle Scholar
Man Suherman, P., van Riessen, A., O’Connor, B., Li, D., Bolton, D., and Fairhurst, H. (2002). “Determination of amorphous phase levels in Portland cement clinker,” Powder Diffr.PODIE2 17, 178185.10.1154/1.1471518CrossRefGoogle Scholar
Maslen, E. N., Streltsov, V. A., and Streltsova, N. R. (1995). “Electron density and optical anisotropy in rhombohedral carbonates. III. Synchroton X-ray studies of CaCO3, MgCO3 and MgCO3,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 51, 929939.10.1107/S0108768195006434CrossRefGoogle Scholar
Mondal, P. and Jeffery, J. W. (1975). “The crystal structure of tricalcium aluminate, Ca3Al2O6,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 31, 689697.10.1107/S0567740875003639CrossRefGoogle Scholar
Mueller, R. (2001). “Stabilisierung verschiedener dicalciumsilikat-modifikationen durch den einbau von phosphat: Synthese, Rietveld-analyse, kalorimetrie,“ Diploma thesis, University of Erlangen.Google Scholar
Mursic, Z., Vogt, T., Boysen, H., and Frey, F. (1992). “Single-crystal neutron diffraction study of metamict zircon up to 2000 K,” J. Appl. Crystallogr.JACGAR 25, 519523.10.1107/S0021889892002577CrossRefGoogle Scholar
O’Connor, B. H. and Raven, M. D. (1988). “Application of the Rietveld refinement procedure in assaying powdered mixtures,” Powder Diffr.PODIE2 3, 26.CrossRefGoogle Scholar
Ojima, K., Hishihata, Y., and Sawada, A. (1995). “Structure of potassium sulfate at temperatures from 296 K down to 15 K,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 51, 287293.10.1107/S0108768194013327CrossRefGoogle Scholar
Pedersen, B. F. (1982). “Neutron diffraction refinement of the structure of gypsum,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 38, 10741077.10.1107/S0567740882004993CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Robinson, K., Gibbs, V., and Ribbe, P. H. (1971). “The structure of zircon: A comparison with garnet,” Am. Mineral.AMMIAY 56, 782791.Google Scholar
Scrivener, K. L., Füllmann, T., Gallucci, E., Walenta, G., and Bermejo, E. (2004). “Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods,” Cem. Concr. Res.CCNRAI 34, 15411547.10.1016/j.cemconres.2004.04.014CrossRefGoogle Scholar
Struble, L. J. (1985). “The effect of water on maleic acid and salicylic acid extractions,” Cem. Concr. Res.CCNRAI 15, 631636.10.1016/0008-8846(85)90062-6CrossRefGoogle Scholar
Takéuchi, Y. and Nishi, F. (1980). “Crystal-chemical characterization of the Al2O3–Na2O solid-solution series,” Z. Kristallogr.ZEKRDZ 152, 259307.10.1524/zkri.1980.152.3-4.259CrossRefGoogle Scholar
Taylor, H. F. W. (1997). Cement Chemistry (Thomas Telford, London).10.1680/cc.25929CrossRefGoogle Scholar
Többens, D. M., Stuesser, N., Knorr, K., Mayer, H. M., and Lampert, G. (2001). “The new high-resolution neutron powder diffractometer at the Berlin neutron scattering center,” Mater. Sci. ForumMSFOEP 378–381, 288293.10.4028/www.scientific.net/MSF.378-381.288CrossRefGoogle Scholar
Trueblood, K. N., Bürgi, H. -B., Burzlaff, H., Dunitz, J. D., Gramaccioli, C. M., Schulz, H. H., Shmueli, U., and Abrahams, S. C. (1996). “Atomic displacement parameter nomenclature report of a subcommittee on atomic displacement parameter nomenclature,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 52, 770781.10.1107/S0108767396005697CrossRefGoogle Scholar
Weiss, H. and Bräu, M. F. (2009). “How much water does calcined gypsum contain?,” Angew. Chem., Int. Ed.ACIEF5 48, 35203524.10.1002/anie.200900726CrossRefGoogle ScholarPubMed
Westphal, T., Füllmann, T., and Pöllmann, H. (2009). “Rietveld quantification of amorphous portions with an internal standard-mathematical consequences of the experimental approach,” Powder Diffr.PODIE2 24, 239243.10.1154/1.3187828CrossRefGoogle Scholar
Whitfield, P. S. and Mitchell, L. D. (2003). “Quantitative Rietveld analysis of the amorphous content in cements and clinkers,” J. Mater. Sci.JMTSAS 38, 44154421.10.1023/A:1026363906432CrossRefGoogle Scholar
Young, R. A. (1995). The Rietveld Method (Oxford University Press, New York).Google Scholar