Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T14:33:27.800Z Has data issue: false hasContentIssue false

Determination of crystal structures of polymorphic chlorothalonil using Monte Carlo simulated annealing and Rietveld refinement

Published online by Cambridge University Press:  05 March 2012

Xiurong Hu*
Affiliation:
Central Laboratory, Xixi Campus, Zhejiang University, Hangzhou, 3100328 China
Ziqin Yuan
Affiliation:
Central Laboratory, Xixi Campus, Zhejiang University, Hangzhou, 3100328 China
Guanglie Lu
Affiliation:
Central Laboratory, Xixi Campus, Zhejiang University, Hangzhou, 3100328 China
*
a)Electronic mail: [email protected]

Abstract

Crystal structures of types II and III chlorothalonil, 2,4,5,6-tetrachloro-1,3-dicyanobenzene, (C8Cl4N2) were solved by applying Monte Carlo simulated annealing techniques to X-ray powder diffraction data and refined using the Rietveld method. Both types of chlorothalonil crystallize in monoclinic symmetry (space group P21 and two molecules per unit cell). Lattice parameters are: a=8.1615(18) Å, b=9.4191(19) Å, c=6.4728(14) Å, β=93.7307(64)° and V=497.8 Å3 for type II, and a=8.6003(10) Å, b=9.2382(11) Å, c=6.3024(7) Å, β=96.2152(60)° and V=498.5 Å3 for type III. The structures of both types of chlorothalonil are stacked by two coplanar molecular sheets paralleled to the b-axis. The adjacent two paralleled molecules in type II are on the same plane, while those in type III are on two different parallel planes.

Type
Selected Papers from 2003 Chinese National Symposium on XRD
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Britton, D. (1981). “2,4,5,6-Tetrachloro-1,3-dicyanobenzene, Cl4C6(CN)2 and 2,3,5,6-Tetrachloro-1,4-dicyanobenzene, Cl4C6(CN)2,” Cryst. Struct. Commun. CSCMCS 10, 1501.Google Scholar
David, W. I. F. and Shankland, K. (2001). DASH 2.1, The Cambridge Crystallographic Data Centre, CCDC.Google Scholar
ICDD (2004). “Powder Diffraction File,” International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073-3273.Google Scholar
Leach, A. R. (1996). Molecular Modelling: Principles and Applications (Longman, Harlow) (ISBN 0582239338), pp. 382385.Google Scholar
Materials Data Inc. (MDI). (2002). Jade 6.5 XRD pattern processing software.Google Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889881009618 14, 357.CrossRefGoogle Scholar
Press, W. H. and Flannery, B. P. (1986). Numerical Recipes Simulated Annealing, edited by Teukolsky, S. A. et al. (Cambridge University Press, New York), pp. 274277, 326–337.Google Scholar
Querzola, G. and Epis, G. (1986). “Process and the production of chlorothalonyl,” World Intellectual Property Organization, International Publication Number: WO86/06066.Google Scholar
Young, R. A. (1993). The Rietveld Method, edited by Young, R. A., IUCr Monographs on Crystallography, Vol. 5 (IUCr/Oxford University Press, Oxford.), pp. 138.CrossRefGoogle Scholar