Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T09:24:54.187Z Has data issue: false hasContentIssue false

Debye temperature of 4H-SiC determined by X-ray powder diffraction

Published online by Cambridge University Press:  29 February 2012

T. H. Peng
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
Y. F. Lou
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
S. F. Jin
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
W. Y. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
W. J. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
G. Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
X. L. Chen*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
*
a)Author to whom the correspondence should be addressed. Electronic mail: [email protected]

Abstract

Crystal structure of 4H-SiC was refined from room-temperature X-ray powder diffraction data using the Rietveld refinement method. The refined lattice constants were determined to be a=b=3.079 93(0) Å, c=10.082 22(2) Å, and the refined overall temperature factor B=0.383(3) Å2. Using the Debye approximation, the Debye temperature was successfully determined to be 1194.8 K.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, X. L., Liang, J. K., Xu, Y. P., Xu, T., Jiang, P. Z., Yu, Y. D., and Lu, K. Q. (1999). “Structure and Debye temperature of wurtzite GaN,” Mod. Phys. Lett. BMPLBET 13, 285290.10.1142/S0217984999000385CrossRefGoogle Scholar
Hobgood, H., Brady, M. F., Calus, M. R., Jenny, J. R., Leonard, R. T., Malta, D. P., Müller, St. G., Powell, A. R., Tsvetkov, V. F., and Glass, R. C. (2004). “Silicon carbide crystal and substrate technology: A survey of recent advances,” Mater. Sci. ForumMSFOEP 457–460, 3–8.10.4028/www.scientific.net/MSF.457-460.3Google Scholar
Li, H. Q., Chen, X. L., Ni, D. Q., and Wu, X. (2003). “Factors affecting the graphitization behavior of the powder source during seeded sublimation growth of SiC bulk crystal,” J. Cryst. GrowthJCRGAE 258, 100105.10.1016/S0022-0248(03)01492-1CrossRefGoogle Scholar
Li, H. Q., Chen, X. L., Ni, D. Q., and Wu, X. (2004). “An analysis of seed graphitization for sublimation growth of SiC bulk crystal,” Diamond Relat. Mater.DRMTE3 13, 151156.10.1016/j.diamond.2003.10.030CrossRefGoogle Scholar
Lin, G. J., Ho, J. C., and Dandekar, D. P. (1987). “Low-temperature heat capacities of silicon carbide,” J. Appl. Phys.JAPIAU 61, 5198.10.1063/1.338302CrossRefGoogle Scholar
Lonsdale, K. and Kasper, J. S. (1959). International Tables for X-Ray Crystallography (Kynoch Press, Birmingham), Vol. 2, p. 264.Google Scholar
Lu, S. S. and Liang, J. K. (1981). “The determination of Debye characteristic temperatures of crystals from X-ray diffraction intensities,” Acta Phys. Sin. 30, 13611368.Google Scholar
Nakashima, S. and Harima, H. (1997). “Raman investigation of SiC polytypes,” Phys. Status Solidi APSSABA 162, 3964.10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L3.0.CO;2-L>CrossRefGoogle Scholar
Peng, T. H., Yang, H., Jian, J. K., Wang, W. J., Wang, W. Y., and Chen, X. L. (2009). “Factors affecting the formation of misoriented domains in 6H-SiC single crystals grown by PVT method,” Cryst. Res. Technol.CRTEDF 44, 357362.10.1002/crat.200800581CrossRefGoogle Scholar
Riello, P., Fagherazzi, G., Clemente, D., and Canton, P. (1995). “X-ray Rietveld analysis with a physically based background,” J. Appl. Crystallogr.JACGAR 28, 115120.10.1107/S002188989401037XGoogle Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr.ABCRE6 22, 151152.10.1107/S0365110X67000234CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Rodríguez-Carvajal, J. (2003). FULLPROF: A program for Rietveld refinement and pattern matching analysis, Version 2.45, Computer Software, Laboratories Léon Brillouin, CEA-CNRS, Saclay.Google Scholar
Shaffer, P. T. B. (1969). “A review of the structure of silicon carbide,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR 25, 477488.10.1107/S0567740869002457CrossRefGoogle Scholar
Singh, D. and Varshni, Y. P. (1981). “Debye temperatures for hexagonal crystals,” Phys. Rev. BPRBMDO 24, 43404347.10.1103/PhysRevB.24.4340Google Scholar
Slack, G. A. (1964). “Thermal conductivity of pure and impure silicon, silicon carbide, and diamond,” J. Appl. Phys.JAPIAU 35, 34603466.10.1063/1.1713251CrossRefGoogle Scholar
Wang, L., Hu, X. B., Xu, X. G., Jiang, S. Z., Ning, L. N., and Jiang, M. H. (2007). “Synthesis of high purity SiC powder for high-resistivity SiC single crystals growth,” J. Mater. Sci. Technol.JSTEFX 23, 118122.Google Scholar
Wei, Z. F., Che, G. C., Wang, F. M., Wang, W. C., He, M., and Chen, X. L. (2001). “Debye temperature of MgB2,” Mod. Phys. Lett. BMPLBET 15, 11091115.10.1142/S0217984901002889Google Scholar
Zhu, L. N., Li, H. Q., Hu, B. Q., Wu, X., and Chen, X. L. (2005). “New type of defects in SiC grown by the PVT method,” J. Phys.: Condens. MatterJCOMEL 17, L85–L91.10.1088/0953-8984/17/10/L01Google Scholar
Zywietz, A., Karch, K., and Bechstedt, F. (1996). “Influence of polytypism on thermal properties of silicon carbide,” Phys. Rev. BPRBMDO 54, 17911798.10.1103/PhysRevB.54.1791CrossRefGoogle ScholarPubMed