Published online by Cambridge University Press: 10 January 2013
The effect of crystallite-size distribution on the shape of X-ray diffraction peaks from powder samples is investigated focusing the attention on the region within the top half of intensity. It is shown that, unlike profile tails, this central region can markedly depart from the Lorentzian shape for crystallite-size distributions that are quite acceptable from the physical point of view. Goal of this paper is to correlate the well-known m parameter in the Pearson VII function or the η weight in the pseudo-Voigt function with a number of different distributions of crystallite dimensions ranging from the δ function of all-equal-sized crystals to a very broad distribution. The suitably normalized curvature at the peak is a possible new parameter; its correlation with m and η is shown. Also, a procedure is suggested to derive the volume-average crystal thickness 〈Tw〉 from the FWHM and the knowledge of either m or η.