Published online by Cambridge University Press: 23 June 2017
Nanocrystalline boehmite (gamma-aluminium-oxyhydroxide) is a material of industrial importance, the functionality of which follows from its crystalline microstructure. A procedure for preparing boehmite nanoparticles, comprising the formation of a precipitate by the alkalization of an aqueous solution of aluminium nitrate and subsequent hydrothermal aging, was previously elaborated. The application of an additive (maltitol or tartaric acid) to control the sizes and shapes of crystallites in the produced polycrystalline powder of boehmite was developed. The aim of this work is a study of the effect of the hydrothermal treatment time on nanocrystalline characteristics of boehmite, both in absence and in presence of the additive. The obtained materials were investigated by using X-ray diffraction (XRD) as principal technique and additionally by scanning and transmission electron microscopy. The multi-peak analysis of powder XRD patterns was applied to determine the prevalent crystallite shape, volume-weighted crystallite size distribution, and second-order crystalline lattice strain distribution being principal quantitative characteristics of the crystalline microstructure. Based on these characteristics, three types of the microstructure correlated with the production procedures were observed and discussed in detail. The nanoparticles of boehmites were found to be monocrystalline grains with characteristic habits and sizes of order of ten nanometers weakly dependent on the hydrothermal treatment time.