Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T21:10:50.188Z Has data issue: false hasContentIssue false

Crystal structure refinement of new vanadates Ca8−xPbxCdBi(VO4)7

Published online by Cambridge University Press:  29 March 2017

Daria Petrova*
Affiliation:
Chemistry Department, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia Physical and Colloid Chemistry Department, Gubkin Russian State University of Oil and Gas (National Research University), Leninskiy prospekt, d. 65, Moscow, Russia
Dina Deyneko
Affiliation:
Chemistry Department, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia Shubnikov Institute of Crystallography RAS, Leninskiy prospekt, d. 59, Moscow, Russia
Sergey Stefanovich
Affiliation:
Chemistry Department, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia L.Ya. Karpov Institute of Physical Chemistry, Obukhova per., d. 3, Moscow, Russia
Bogdan Lazoryak
Affiliation:
Chemistry Department, Lomonosov Moscow State University, Leninskie gory, d. 1, Moscow, Russia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

New Ca8−xPbxCdBi(VO4)7 with the whitlockite-type structure were prepared by a standard solid-state method in air. Le Bail decomposition was used to determine unit-cell parameters. Structural refining was carried out by Rietveld's method. It is found that Bi3+ cations located partially in M1 and M2 sites along with calcium, while M3 site is settled in half by Pb2+-ions. Second-harmonic generation demonstrate highest non-linear optical activity and along with dielectric investigations indicate polar space group R3c.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benarafa, A., Kacimi, M., Coudurier, G., and Ziyad, M. (2000). “Characterisation of the active sites in butan-2-ol dehydrogenation over calcium–copper and calcium–sodium–copper phosphates,” Appl. Catal. A 196(1), 2535.CrossRefGoogle Scholar
Deyneko, D. V., Stefanovich, S. Yu., Mosunov, A. V., Baryshnikova, O. V., and Lazoryak, B. I. (2013a). “Ca10.5–xPbx(PO4)7 and Ca9.5–xPbxM(PO4)7 ferroelectrics with the whitlockite structure,” Inorg. Mater. 49(8), 807812.CrossRefGoogle Scholar
Deyneko, D. V., Stefanovich, S. Yu., Mosunov, A. V., Baryshnikova, O. V., and Lazoryak, B. I. (2013b). “Structure and properties of Ca9−xPbxR(PO4)7 (R = Sc, Fe, Ga, In) whitlockite-like solid solutions,” Russ. Inorg. Mater. 49(5), 507512.CrossRefGoogle Scholar
Dusek, M., Petrícek, V., Wunschel, M., Dinnebier, R. E., and Van Smaalen, S. (2001). “Refinement of modulated structures against X-ray powder diffraction data with JANA2000,” J. Appl. Crystallogr. 34(3), 398404.CrossRefGoogle Scholar
Evans, J. S. O., Huang, J., and Sleight, A. W. (2001). “Synthesis and structure of ACa9(VO4)7 compounds, A = Bi or a rare earth,” J. Solid State Chem. 157(2), 255260.CrossRefGoogle Scholar
Kurtz, C. K. and Perry, T. T. (1968). “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 37983813.CrossRefGoogle Scholar
Lazoryak, B. I. (1996). “Design of inorganic compounds with tetrahedral anions,” Russ. Chem. Rev. 65(4), 287305.CrossRefGoogle Scholar
Lazoryak, B. I., Baryshnikova, O. V., Stefanovich, S. Y., Malakho, A. P., Morozov, V. A., Belik, A. A., Leonidov, I. A., Leonidova, O. N., and Van Tendeloo, G. (2003). “Ferroelectric and ionic-conductive properties of nonlinear-optical vanadate, Ca9Bi(VO4)7 ,” Chem. Mater. 15(15), 30033010.CrossRefGoogle Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “ Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. 23(3), 447452.CrossRefGoogle Scholar
Liang, X., Yuan, Sh., Yang, Y., and Chen, G. (2010). “The luminescence properties of Er3+- doped and Er3+–Tm3+- co-doped phosphate glasses for white light emitting diode,” J. Lumin. 130(3), 429433.CrossRefGoogle Scholar
Petricek, V., Dusek, M., and Palatinus, L. (2014). “Crystallographic computing system JANA2006: general features,” Z. Kristallogr. 229(5), 345352.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751764.CrossRefGoogle Scholar
Vorontsova, O. L., Malakho, A. P., Morozov, V. A., Stefanovich, S. Yu., and Lazoryak, B. I. (2004). “Ferroelectric and nonlinear optical properties of Ca9−x Cd x Bi(VO4)7 vanadates,” Russ. J. Inorg. Chem. 49(12), 19321942.Google Scholar
Wu, X., Huang, Y., and Seo, H. J. (2011). “The luminescence spectroscopy and thermal stability of red-emitting phosphor Ca9Eu(VO4)7 ,” Ceram. Int. 37(7), 23232328.CrossRefGoogle Scholar
Yashima, M., Sakai, A., Kamiyama, T., and Hoshikawa, A. (2003). “Crystal structure analysis of b-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175(2), 272277.CrossRefGoogle Scholar
Zhang, J., Wang, Y., Guo, L., Zhang, F., Wen, Y., Liu, B., and Huang, Y. (2011). “Vacuum ultraviolet and near-infrared excited luminescence properties of Ca3(PO4)2:RE3+, Na+ (RE = Tb, Yb, Er, Tm, and Ho),” J. Solid State Chem. 184(8), 21782183.CrossRefGoogle Scholar
Supplementary material: File

Petrova supplementary material

Petrova supplementary material 1

Download Petrova supplementary material(File)
File 579.8 KB