Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T22:24:14.186Z Has data issue: false hasContentIssue false

Crystal structure of (Z)-cefprozil monohydrate, C18H19N3O5S(H2O)

Published online by Cambridge University Press:  09 September 2019

Zachary R. Butler
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA
James A. Kaduk*
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of cefprozil monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Cefprozil monohydrate crystallizes in space group P21 (#4) with a = 11.26513(6), b = 11.34004(5), c = 14.72649(11) Å, β = 90.1250(4)°, V = 1881.262(15) Å3, and Z = 4. Although a reasonable fit was obtained using an orthorhombic model, closer examination showed that many peaks were split and/or had shoulders, and thus the true symmetry was monoclinic. DFT calculations revealed that one carboxylic acid proton moved to an amino group. The structure thus contains one ion pair and one pair of neutral molecules. This protonation was confirmed by infrared spectroscopy. There is an extensive array of hydrogen bonds resulting in a three-dimensional network. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Crast, L. B. Jr. (1987). “3-propenyl cephalosporin solvates,” US Patent 4,694,079.Google Scholar
Dassault Systèmes (2018). Materials Studio 2019R1 (BIOVIA, San Diego, CA).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.Google Scholar
Donnay, J. D. H., and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Favre-Nicolin, V., and Černý, R. (2002). “FOX, “Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The cambridge structural database,” Acta Crystallogr. B. 72, 171179.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta. 44, 129138.Google Scholar
Hoshi, H., Okumura, J., Naito, T., Abe, Y., and Aburaki, S. (1985). “Substituted vinyl cephalosporins,” US Patent 4,520,022.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.Google Scholar
Kresse, G., and Furthmüller, J. (1996). “Efficiency of Ab-Initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Kumar, Y., Tewari, N., Singh, S. K., and Rai, B. P. (2004). “Solvates of cefprozil,” International Patent Application WO 2004/110399 A2.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.Google Scholar
Liu, C., Song, L., Zheng, X., Fu, D., and Kang, Y. (2015). “Preparation method of cefprozil monohydrate,” Chinese Patent CN102408438B.Google Scholar
Louër, D., and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powder Diffr. 29, S7S12.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
Materials Design (2016). MedeA V2.20 (Materials Design Inc., San Diego, CA).Google Scholar
MDI (2018). Jade 9.8 (Materials Data Inc., Livermore, CA).Google Scholar
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inform. 3, 33.Google Scholar
Parlinski, K., Li, Z. Q., and Kawazoe, Y. (1997). “First-principles determination of the soft mode in cubic ZrO2,” Phys. Rev. Lett. 78, 40634066.Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.Google Scholar
Qing, S. (2014). “Cefprozil compound, and dispersible tablets, dry suspension and preparation method thereof,” Chinese Patent CN103524533A.Google Scholar
Rammohan, A., and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. B. 74, 239252.Google Scholar
Seetharaman, J., Rajan, S. S., and Srinivasan, R. (1993). “Crystal structure of cefadroxil,” J. Crytallogr. Spectrosc. Res. 23, 235238.Google Scholar
Shin, W., and Cho, S. W. (1992). “Structure of cefadroxil monohydrate,” Acta Crystallogr. C. 48, 14541456.Google Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Spek, A. L. (2009). “Structure validation in chemical crystallography,” Acta Crystallogr. D. 65, 148155.Google Scholar
Strickland, P. R., Hoyland, M. A., and McMahon, B. (2006). “Section 5.7.2.6. Automated data validation: checkcif,” in International Tables for Crystallography. Volume G: Definition and exchange of crystallographic data, edited by Hall, S. and McMahon, B. (Springer, Dordrecht). pp. 561562.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Toby, B. H., and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). http://hirshfeldsurface.net.Google Scholar
van de Streek, J., and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wavefunction Inc. (2018). Spartan ‘18 Version 1.2.0 (Wavefunction Inc., Irvine, CA).Google Scholar
Wheatley, A. M., and Kaduk, J. A. (2019). “Crystal structures of ammonium citrates,” Powder Diffr. 34, 3543.Google Scholar
Supplementary material: File

Butler et al. supplementary material

Butler et al. supplementary material 1

Download Butler et al. supplementary material(File)
File 5.5 KB
Supplementary material: File

Butler et al. supplementary material

Butler et al. supplementary material 2

Download Butler et al. supplementary material(File)
File 2.8 MB
Supplementary material: File

Butler et al. supplementary material

Butler et al. supplementary material 3

Download Butler et al. supplementary material(File)
File 10.4 KB