Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T21:28:03.708Z Has data issue: false hasContentIssue false

Crystal structure of rilpivirine, C22H18N6

Published online by Cambridge University Press:  20 May 2015

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616
Kai Zhong
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of rilpivirine has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rilpivirine crystallizes in space group P21/c (#14) with a = 8.39049(3), b = 13.89687(4), c = 16.03960(6) Å, β = 90.9344(3)°, V = 1869.995(11) Å3, and Z = 4. The most prominent features of the structure are N–H···N hydrogen bonds. These form a R2,2(8) pattern which, along with C1,1(12) and longer chains, yield a three-dimensional hydrogen bond network. The powder pattern has been submitted to International Centre for Diffraction Data, ICDD, for inclusion in future releases of the Powder Diffraction File™.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accelrys (2013). Materials Studio 7.0 (Accelrys Software Inc., San Diego, CA).Google Scholar
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B, Struct. Sci. 58, 380388.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl., 34(15), 15551573.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Z. Kristallogr. 220, 571573.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2002). FOX, “Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Goebel, F., Yakovlev, A., Pozniak, A. L., Vinogradova, E., Boogaerts, G., Hoetelmans, R., de Béthune, M. P., Peeters, M., and Woodfall, B. (2006). “Short-term antiviral activity of TMC278 — a novel NNRTI — in treatment-naive HIV-1-infected subjects,” AIDS 20(13), 17211726.Google Scholar
ICDD (2014), PDF-4+ 2014 (Database). International Centre for Diffraction Data, edited by Dr. Kabekkodu, Soorya (Newtown Square, PA, USA).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). “General Structure Analysis System, (GSAS)”, Los Alamos National Laboratory Report LAUR 86–784.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Radiat. 15(5), 427432.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
MDI (2013). Jade 9.5 (Materials Data. Inc., Livermore, CA).Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inf. 3, 33.Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. B, Struct. Sci. 56(3), 455465.Google Scholar
Spackman, M. A. and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” Cryst. Eng. Commun. 11, 1932.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wavefunction, Inc. (2013). Spartan ‘14 Version 1.1.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.Google Scholar
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 1

Download Kaduk supplementary material(File)
File 2.7 MB
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 2

Download Kaduk supplementary material(File)
File 5.4 KB
Supplementary material: Image

Kaduk supplementary material

Kaduk supplementary material 3

Download Kaduk supplementary material(Image)
Image 195.6 KB