Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-04T19:32:17.887Z Has data issue: false hasContentIssue false

Crystal structure of RbBaVO4 and high-pressure modification of KCaVO4

Published online by Cambridge University Press:  14 November 2013

N.V. Tarakina*
Affiliation:
Experimentelle Physik III, Physikalisches Institut and Wilhelm Conrad Röntgen - Research Centre for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
A.P. Tyutyunnik
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
T.V. Dyachkova
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
L.L. Surat
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
B.V. Slobodin
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia
V.G. Zubkov
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomayskaya str., Ekaterinburg GSP-145, 620990 Russia

Abstract

The crystal structures of KCaVO4 and RbBaVO4, synthesized at high-pressure/high-temperature and by a conventional solid-state reaction, respectively, were determined using X-ray powder diffraction data. These compounds were found to have the β-K2SO4 structure type (space group Pnma, Z = 4) with parameters a = 7.2628(5) Å, b = 5.7258(4) Å, c = 9.6854(7) Å (KCaVO4), and a = 7.8887(1) Å, b = 5.9589(1) Å, c = 10.3958(2) Å (RbBaVO4). The unit cell volume of KCaVO4, 402.77(5) Å3, is significantly lower than for the low-temperature modification reported previously, 436.2 Å3. The difference can be explained by a pressure-induced phase transition to a more dense state resulting from the rotation of tetrahedra and the exchange of oxygen atoms from the first and second coordination spheres for potassium and calcium atoms.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, H., Kurtz, W., Richter-Zinnius, A., Bethke, J. and Heger, G. (1981). “The phase transition of K2SO4 at about 850 K,” Acta Crystallogr., Sect. B : Struct. Crystallogr. Cryst. Chem. 32, 751767.Google Scholar
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. and Rizzi, R. (2009). “EXPO2009: structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallogr. 42, 11971202.Google Scholar
Badini, C., Mazza, D., Ronchetti, S. and Saracco, G. (1999). “Effect of chemical composition of isomorphous metavanadates on their catalytic activity toward carbon combustion,” Mater. Res. Bull. 34, 851862.Google Scholar
Falcón, H., Alonso, J. A., Casais, M. T., Martínez-Lope, M. J. and Sánchez-Benítez, J. (2004). “Neutron diffraction study, magnetism and magnetotransport of stoichiometric CaVO3 perovskite with positive magnetoresistance,” J. Solid State Chem. 177, 30993104.Google Scholar
Gąsior, M., Grzybowska, B., Haber, J., Machej, T. and Ziółkowski, J. (1979). “Oxidation of O-xylene on potassium vanadates,” J. Catal. 58, 1521.CrossRefGoogle Scholar
Inoue, I. H., Bergemann, C., Hase, I. and Julian, S. R. (2002). “Fermi Surface of 3d 1 Perovskite CaVO3 near the Mott Transition,” Phys. Rev. Lett. 88, 236403 (4pp).Google Scholar
Klement, R. and Kresse, P. (1961). “Die Polymorphie der Alkali-Erdalkaliphosphate, -arsenate und -vanadate,” Z. Anorg. Allg. Chem. 310, 5368.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Le Flem, G. and Olazcuaga, R. (1968). “Sur quelques solutions solides de structure Sr3 (P O4)2 caracterisees par des substitutions lacunaires ou couplees,” Bull. Soc. Chim. Fr. 7, 27692780.Google Scholar
Martin, F. D. and Müller-Buschbaum, Hk. (1995). “Ein Beitrag zur Kristallchemie der Alkali-Erdalkali-Oxovanadate: Synthese und Struktur von K3CaV5O15 ,” Z. Naturforsch., B: J. Chem. Sci. 50, 243246.Google Scholar
Mugavero III, S. J., Bharathy, M., McAlum, J. and zur Loye, H. C. (2008). “Crystal growth of alkaline earth vanadates from hydroxide fluxes,” Eur. J. Inorg. Chem. 4, 370376.Google Scholar
Müller-Bushbaum, Hk. and Schrandt, O. (1996). “Geordnete Metallverteilung in KBaVO4 und KSrVO4 mit beta-K2SO4 - Struktur,” Z. Naturforsch., B: J. Chem. Sci. 51, 477480.Google Scholar
Patil, T. A., Jamadar, V. M., and Chavan, S. H. (1987). “Electrical conductivity of the ferroelectric sodium vanadate, potassium vanadate, lithium vanadate and their solid solutions,” Bull. Mater. Sci. 9, 331336.Google Scholar
Saracco, G., Badini, C. and Specchia, V. (1999a). “Catalytic traps for diesel particulate control,” Chem. Eng. Sci. 54, 30353041.Google Scholar
Saracco, G., Badini, C., Russo, N., and Specchia, V. (1999b). “Development of catalysts based on pyrovanadates for diesel soot combustion,” Appl. Catal. B 21, 233242.Google Scholar
Schrandt, O. and Müller-Buschbaum, Hk. (1996). “K+ auf einer mit Ca2+ unterbesetzten Punktlage in Ca3(VO4)2: Ein Beitrag über KCa10V7O28 ,” Z. Naturforsch., B: J. Chem. Sci. 51, 473476.Google Scholar
Slobodin, B. V., Surat, L. L., Samigullina, R. F., Ishchenko, A. V., Shulgin, B. V. and Cherepanov, A. N. (2010). “Thermochemical and Luminescent Properties of the K2MgV2O7 and M2CaV2O7 (M=K, Rb, Cs) Vanadates,” Inorg. Mater. 46, 522528.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767.Google Scholar
Tarakina, N. V., Tyutyunnik, A. P., Zubkov, V. G., D'yachkova, T. V., Zainulin, Yu. G., Hannerz, H. and Svensson, G. (2003). “High temperature/high pressure synthesis and crystal structure of the new corumdum related compound Zn4Nb2O9 ,” Solid State Sci. 5, 459463.Google Scholar
Toby, B. H. (2001). “ EXPGUI, a graphical user interface for GSAS ,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Tyutyunnik, A. P., Slobodin, B. V., Samigullina, R. F., Verberck, B. and Tarakina, N. V. (2013). “K2CaV2O7: a pyrovanadate with a new layered type of structure in the A2BV2O7 family,” Dalton Trans. 42(4), 10571064.Google Scholar
Yamauchi, T., Isobe, M., and Ueda, Y. (2004). “Crystal growth and electromagnetic properties of β-vanadium bronzes, β-A0.33V2O5 (A=Ca, Sr and Pb),” J. Magn. Magn. Mater. 272–276, 442443.Google Scholar
Yamaura, J., Yamauchi, T., Ninomiya, E., Sawa, H., Isobe, M., Yamada, H. and Ueda, Y. (2004). “X-ray characterization for the charge ordering on β(β′)-vanadium oxide bronzes,” J. Magn. Magn. Mater. 272–276, 438439.Google Scholar
Zubkov, V. G., Tyutyunnik, A. P., Tarakina, N. V., Berger, I. F., Surat, L. L., Slobodin, B. V., Svensson, G., Forslund, B., Shulgin, B. V., Pustovarov, V. A., Ishchenko, A. V. and Cherepanov, A. N. (2009). “Synthesis, crystal structure and luminescent properties of pyrovanadates A2CaV2O7 (A=Rb, Cs),” Solid State Sci. 11, 726732.Google Scholar
Zubkov, V. G., Tyutyunnik, A. P., Berger, I. F., Surat, L. L., Tarakina, N. V., Slobodin, B. V., and Bamburov, V. G. (2008). “Synthesis and crystal structure of A4Ba(VO3)6 compounds,” Dokl. Phys. Chem. 421, 211215.Google Scholar