Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T08:53:49.387Z Has data issue: false hasContentIssue false

The crystal structure of MoO2(O2)H2O

Published online by Cambridge University Press:  14 February 2018

Joel W. Reid*
Affiliation:
Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, Canada, S7N 2V3
James A. Kaduk
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois, 60616, USA
Lidia Matei
Affiliation:
Canadian Isotope Innovations Corp., 232-111 Research Drive, Saskatoon, SK, Canada, S7N 3R2
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of MoO2(O2)H2O has been solved by analogy with the WO2(O2)H2O structure and refined with synchrotron powder diffraction data obtained from beamline 08B1-1 at the Canadian Light Source. Rietveld refinement, performed with the software package GSAS, yielded monoclinic lattice parameters of a = 12.0417(4) Å, b = 3.87003(14) Å, c = 7.38390(24) Å, and β = 78.0843(11)° (Z = 4, space group P21/n). The structure is composed of double zigzag molybdate chains running parallel to the b-axis. The Rietveld refined structure was compared with density functional theory (DFT) calculations performed with CRYSTAL14, and show strong agreement with the DFT optimized structure.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, S., Pillai, M. R. A., and Ramamoorthy, N. (2001). “Evolution of Tc-99 m in diagnostic radiopharmaceuticals,” Semin. Nucl. Med. 31, 260277.Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (Oxford University Press, New York).Google Scholar
Chattopadhyay, S., Das, S. S., and Barua, L. (2010), “A simple and rapid technique for recovery of 99mTc from low specific activity (n,γ)99Mo based on solid–liquid extraction and column chromatography methodologies,” Nucl. Med. Biol. 37, 1720.CrossRefGoogle Scholar
Cora, F., Patel, A., Harrison, N. M., Roetti, C., and Catlow, C. R. A. (1997). “An ab-initio Hartree-Fock study of alpha-MoO3 ,” J. Mater. Chem. 7, 959967.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the Ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871313.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27, 892900.Google Scholar
Fodje, M., Grochulski, P., Janzen, K., Labiuk, S., Gorin, J., and Berg, R. (2014). “08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source,” J. Synchrotron Radiat. 21, 633637.Google Scholar
Galea, R., Ross, C., and Wells, R. G. (2014). “Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage,” Appl. Radiat. Isot. 87, 148151.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Hellenbrandt, M. (2004). “The Inorganic Crystal Structure Database (ICSD) – present and future,” Crystallogr. Rev. 10, 1722.CrossRefGoogle Scholar
Hoedl, S. A. and Updegraff, W. D. (2015). “The production of medical isotopes without nuclear reactors or uranium enrichment,” Sci. Glob. Sec. 23, 121153.Google Scholar
ICDD (2016), PDF-4+ 2016 (Database). International Centre for Diffraction Data, edited by Dr. Soorya Kabekkodu (Newtown Square, PA, USA).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748). Los Alamos, NM: Los Alamos National Laboratory.Google Scholar
McAlister, D. R. and Horwitz, E. P. (2009). “Automated two column generator system for medical radionuclides,” Appl. Radiat. Isot. 67, 19851991.CrossRefGoogle ScholarPubMed
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.Google Scholar
Pecquenard, B., Castro-Garcia, S., Livage, J., Zavalij, P. Y., Whittingham, M. S., and Thouvenot, R. (1998). “Structure of hydrated tungsten peroxides [WO2(O2)H2O]·nH2O,” Chem. Mater. 10, 18821888.Google Scholar
Reid, J. W., Kaduk, J. A., and Olson, J. A. (2017). “The crystal structure of Na(NH4)Mo3O10·H2O,” Powder Diffr. 32, 140147.Google Scholar
Sasaki, S. (1989). Numerical Tables of Anomalous Scattering Factors Calculated by the Cromer and Lieberman's Method (KEK–88-14). Japan.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). Rietveld refinement of Debye-Scherrer synchrotron X-ray data from A1203 ,” J. Appl. Crystallogr. 20, 7983.Google Scholar
Tkac, P and Vandergrift, G. F. (2016). “Recycling of enriched Mo targets for economic production of 99Mo/99mTc medical isotope without use of enriched uranium,” J. Radioanal. Nucl. Chem. 308, 205212.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open-source all-purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.Google Scholar
Van Noorden, R. (2013). “The medical testing crisis,” Nature 504, 202204.Google Scholar
Von Dreele, R. (1997). “Quantitative texture analysis by Rietveld refinement,” J. Appl. Crystallogr. 30, 517525.Google Scholar
Wolterbeek, B., Kloosterman, J. L., Lathouwers, D., Rohde, M, Winkelman, A., Frima, L., and Wols, F. (2014). “What is wise in the production of 99Mo? A comparison of eight possible production routes,” J. Radioanal. Nucl. Chem. 302, 773779.Google Scholar
Supplementary material: File

Reid et al. supplementary material

Reid et al. supplementary material 1

Download Reid et al. supplementary material(File)
File 943.1 KB