Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T22:45:54.384Z Has data issue: false hasContentIssue false

The crystal structure of KCaF3 at 4.2 and 300 K: A re-evaluation using high-resolution powder neutron diffraction

Published online by Cambridge University Press:  01 March 2012

K. S. Knight*
Affiliation:
ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, United Kingdom and Department of Mineralogy, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
C. N. W. Darlington
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
I. G. Wood
Affiliation:
Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
*
a)Electronic mail: [email protected]

Abstract

The crystal structure of the perovskite phase KCaF3 has been redetermined at 4.2 and 300 K using powder neutron diffraction collected at the highest resolution. At both temperatures the phase was found to be orthorhombic in space group Pnma, with lattice parameters a=0.622 879(5) nm, b=0.870 031(7) nm, c=0.611 210(5) nm at 4.2 K, and a=0.621 488(6) nm, b=0.876 360(8) nm, c=0.616 481(6) nm at 300 K. The CaF6 octahedron is regular at both temperatures with octahedral rotations of 9.6° and 13.2° for the in-phase and anti-phase tilts, respectively, at 4.2 K. No evidence was found to support the recent revision of the space group from Pnma to the monoclinic space group B21m.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bulou, A., Nouet, J., Hewat, A. W., and Schäfer, F. J. (1980). “Structural phase transitions in KCaF3–DSC, birefringence and neutron powder diffraction results,” Ferroelectrics FEROA8 25, 375378.CrossRefGoogle Scholar
Cochran, W. and Zia, A. (1968). “Structure and dynamics of perovskite-type crystals,” Phys. Status Solidi PHSSAK , 25, 273283.CrossRefGoogle Scholar
Cowley, R. A. (1964). “Lattice dynamics and phase transitions of strontium titanate,” Phys. Rev. PRVAAH 10.1103/PhysRev.134.A981 134, A981–A997.CrossRefGoogle Scholar
Cracknell, A. P., Davies, B. L., Miller, S. C., and Love, W. F. (1979). General Introduction and Tables of Irreducible Representations of Space Groups, Kronecker Product Tables Vol. 1. (Plenum, New York), 656 pp.Google Scholar
Darlington, C. N. W. (1975). “Phenomenology of ferroelectrics with rotated octahedral,” Philos. Mag. PHMAA4 31, 11591175.CrossRefGoogle Scholar
Darlington, C. N. W. (2002a). “Normal-mode analysis of the structures of perovskites with tilted octahedra,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A58, 6671.CrossRefGoogle Scholar
Darlington, C. N. W. (2002b). “Normal-mode analysis of the structures of perovskites with tilted octahedra. Erratum,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A58, 299300.CrossRefGoogle Scholar
Glazer, A. M. (1972). “The classification of tilted octahedra in perovskites,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B28, 33843392.CrossRefGoogle Scholar
Hidaka, M., Yamashita, S., and Okamoto, Y. (1984). “Study of the structural phase transitions of KCaF3,” Phys. Status Solidi A PSSABA 81, 177183.CrossRefGoogle Scholar
Howard, C. J., Knight, K. S., Kennedy, B. J., and Kisi, E. H. (2000). “The structural phase transitions in strontium zirconate revisited,” J. Phys.: Condens. Matter JCOMEL 12, L677–L683.Google Scholar
Howard, C. J., Luca, V., and Knight, K. S. (2002). “High-temperature phase transitions in tungsten trioxide—the last word?,” J. Phys.: Condens. Matter JCOMEL 14, 377387.Google Scholar
Howard, C. J. and Stokes, H. T. (1998). “Group theoretical analysis of octahedral tilting in perovskites,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B54, 782789.CrossRefGoogle Scholar
Howard, C. J. and Stokes, H. T. (2002). “Group theoretical analysis of octahedral tilting in perovskites. Erratum,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 10.1107/S010876810200890X B58, 565.CrossRefGoogle Scholar
Jouanneaux, A., Daniel, P., and Bushnell-Wye, G. (1998). “Structural instabilities in disordered perovskites Rb 1−xKxCaF3 studied by synchrotron radiation powder diffraction. Proposition for a phase diagram,” J. Phys.: Condens. Matter JCOMEL 10, 54855502.Google Scholar
Knight, K. S. (1994). “Structural phase transitions in BaCeO 3,” Solid State Ionics SSIOD3 74, 109117.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (1986). GSAS General Structure Analysis System (Los Alamos National Laboratory Report LAUR 86-748).Google Scholar
Megaw, H. D. (1973). Crystal Structures–A Working Approach (Saunders, Philadelphia), 581 pp.Google Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. JACGAR 14, 357361.CrossRefGoogle Scholar
Ratuszna, A., Daniel, P., and Rousseau, M. (1995). “Optical and X-ray evidence of structural phase transitions in mixed (Rb 1−xKx)CaF3 crystals,” Phase Transitions PHTRDP 54, 4359.CrossRefGoogle Scholar
Ratuszna, A., Rousseau, M., and Daniel, P. (1997). “Crystal structure of KCaF3 determined by the Rietveld profile method,” Powder Diffr. PODIE2 12, 7075.CrossRefGoogle Scholar
Rousseau, M., Daniel, P., and Hennion, B. (1997). “The dynamic signature of highly anisotropic correlation in the phase transition in KCaF3,” J. Phys.: Condens. Matter JCOMEL 9, 89638971.Google Scholar
Woodward, P. M. (1997). “Octahedral tilting in perovskites. I. Geometrical considerations,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B53, 3243.CrossRefGoogle Scholar
Wood, I. G. (unpublished).Google Scholar