Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T22:01:23.141Z Has data issue: false hasContentIssue false

Crystal structure of fulvestrant hydrate (ethyl acetate), C32H47F5O3S(H2O)0.16(C4H8O2)0.025

Published online by Cambridge University Press:  28 June 2022

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA North Central College, 131 S. Loomis St., Naperville, IL 60540, USA
Nicholas C. Boaz
Affiliation:
North Central College, 131 S. Loomis St., Naperville, IL 60540, USA
Stacy D. Gates-Rector
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of fulvestrant hydrate (ethyl acetate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. This solvate of fulvestrant crystallizes in space group R3 (#146) with a = 23.39188(16), c = 16.50885(13) Å, V = 7823.08(7) Å3, and Z = 9. The crystal structure is composed of triangular hydrogen-bonded chains of molecules around one of the threefold axes. The fluorinated ends of the molecules cluster around another threefold axis. Voids around a threefold axis occupy 8.1% of the unit cell volume, and are partially occupied by the water and ethyl acetate molecules. Both hydroxyl groups act as donors in O–H⋯O hydrogen bonds. These H-bonds form a large ring. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H. (2008). “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld refinement of quartz, sodalite, tremolite, and meionite,” Can. Mineral. 46, 15011509.CrossRefGoogle Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.CrossRefGoogle Scholar
Bowler, J. and Tait, B. S. (1987). “Steroid Derivatives,” U.S. Patent 4,659,516.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Brazier, E. J., Hogan, P. J., Leung, C. W., O'Kearney-McMullan, A., Norton, A. K., Powell, L., Robinson, G. E., and Williams, E. G. (2010). “Fulvestrant: from the laboratory to commercial-scale manufacture,” Org. Process Res. Dev. 14, 544552. doi:10.1021/op900315j.CrossRefGoogle Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Castillo, J., Iturraspe, J. B., and Nunez, J. L. (2014). “Pharmaceutical Composition,” U.S. Patent Application 2014/0088061 A1.Google Scholar
Dassault Systèmes (2021). Materials Studio 2021 (BIOVIA, San Diego, CA).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.CrossRefGoogle Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Drugs.com (2022). Fulvestrant. Available at: https://www.drugs.com/mtm/fulvestrant.html (accessed February 29, 2022).Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E., and Goldberg, K. I. (2010). “NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist,” Organometallics 29, 21762179. doi:10.1021/om100106e.CrossRefGoogle Scholar
Gates-Rector, S. and Blanton, T. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powd. Diffr. 39(4), 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powd. Diffr. 29(3), 269273.CrossRefGoogle Scholar
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., and Bolton, E. E. (2019). “PubChem 2019 update: improved access to chemical data,” Nucleic Acids Res. 47(D1), D1102D1109. doi:10.1093/nar/gky1033.CrossRefGoogle ScholarPubMed
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchroton Radiat. 15(5), 427432.CrossRefGoogle ScholarPubMed
Li, Y., Wang, Y., Li, Z., Xu, F., and Sun, H. (2008).“Crystal form of fulvestrant and preparation method thereof,” Chinese Patent Application CN101525364A.Google Scholar
Macdonald, P. L., Bigatti, E., and Rossetto, P. (2006). “A process for the preparation of 7α-alkylated 19-norsteroids,” International Patent Application WO 2006/015081 A2.Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0: from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
MDI (2021). JADE Pro Version 8.1 (Computer Software) (Materials Data, Livermore, CA, USA).Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.CrossRefGoogle ScholarPubMed
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. Sect. B: Cryst. Eng. Mater. 74, 239252. https://doi.org.10.1107/S2052520618002330.CrossRefGoogle ScholarPubMed
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. Sec. B: Struct. Sci. 56(3), 455465.CrossRefGoogle ScholarPubMed
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle Scholar
Tien, Y.-C., Su, C.-S., Lien, L.-H., and Chen, Y.-P. (2010). “Recrystallization of erlotinib hydrochloride and fulvestrant using supercritical antisolvent process,” J. Supercritical Fluids 55, 292299.CrossRefGoogle Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc. (2020). Spartan ‘18 Version 1.4.5, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612.Google Scholar
Supplementary material: Image

Kaduk et al. supplementary material

Kaduk et al. supplementary material 1

Download Kaduk et al. supplementary material(Image)
Image 135.6 KB
Supplementary material: Image

Kaduk et al. supplementary material

Kaduk et al. supplementary material 2

Download Kaduk et al. supplementary material(Image)
Image 113.1 KB
Supplementary material: Image

Kaduk et al. supplementary material

Kaduk et al. supplementary material 3

Download Kaduk et al. supplementary material(Image)
Image 94.7 KB
Supplementary material: Image

Kaduk et al. supplementary material

Kaduk et al. supplementary material 4

Download Kaduk et al. supplementary material(Image)
Image 96.2 KB