Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T23:36:09.420Z Has data issue: false hasContentIssue false

Crystal structure of eltrombopag olamine Form I, (C2H8NO)2 (C25H20N4O4)

Published online by Cambridge University Press:  03 March 2021

James A. Kaduk*
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois60616, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of eltrombopag olamine Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Eltrombopag olamine crystallizes in the space group P21/n (#14) with a = 17.65884(13), b = 7.55980(2), c = 22.02908(16) Å, β = 105.8749(4)°, V = 2828.665(11) Å3, and Z = 4. The crystal structure is dominated by columns of hydrogen-bonded cations and anions along the short b-axis. van der Waals interactions bind the columns together. Two H atoms of each ammonium group in the ethanolammonium cations participate in strong hydrogen bonds, and the third H forms weaker bifurcated H-bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dassault Systèmes (2020). Materials Studio 2020 (BIOVIA, San Diego, CA, USA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. Cristallogr. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci. Crystallogr. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta 44, 129138.CrossRefGoogle Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.CrossRefGoogle Scholar
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., and Bolton, E. E. (2021). “PubChem in 2021: new data content and improved web interfaces,” Nucleic Acids Res. 49(D1), D1388D1395.CrossRefGoogle ScholarPubMed
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15(5), 427432.CrossRefGoogle ScholarPubMed
Leksic, E., Ceric, H., Mundorfer, T., Antonac, I. Z., and Samardzic, Z. R. (2011). “Polymorphs of eltrombopag and eltrombopag salts and processes for preparation thereof,” US Patent Application 2011/0196008A1.Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0; from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
MDI (2020). JADE Pro version 7.8 (Computer Software) (Materials Data, Livermore, CA, USA).Google Scholar
Moore, S. (2006). “3'-[(2Z)-[1-(3,4-dimethylphenyl)-1,5-dihydro-3-methyl-5-oxo-4H-pyrazol-4-ylidine]hydrazino]-2'-hydroxy-[1,1'-biphenyl]-3-carboxylic acid bis-(monoethanolamine),” US Patent Application 2006/0178518 A1.Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Cheminformatics 3, 33. doi:10.1186/1758-2946-3-33.CrossRefGoogle ScholarPubMed
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. Sect. B: Struct. Sci. Crystallogr. Eng. Mater. 74, 239252. doi:10.1107/S2052520618002330.CrossRefGoogle ScholarPubMed
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT, USA).Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17. (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci. Crystallogr. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle Scholar
Wavefunction, Inc. (2020). Spartan'18 version 1.4.0 (Wavefunction, Inc., Irvine, CA, USA).Google Scholar
Wheatley, A. M. and Kaduk, J. A. (2019). “Crystal structures of ammonium citrates,” Powder Diffr. 34, 3543.CrossRefGoogle Scholar