Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:34:20.588Z Has data issue: false hasContentIssue false

Crystal structure of dehydrated chlorartinite by X-ray powder diffraction

Published online by Cambridge University Press:  01 March 2012

Kunihisa Sugimoto
Affiliation:
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Robert E. Dinnebier
Affiliation:
Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Thomas Schlecht
Affiliation:
Wilhelm-Röntgen-Straße 25/1, D-73760 Ostfildern, Germany

Abstract

In the course of an investigation of cracks in certain magnesia floors containing the mineral chlorartinite [Mg2(CO3)(H2O)(OH)]Cl·H2O, the dehydration process of chlorartinite was carried out in high vacuum. The crystal structure of dehydrated chlorartinite [Mg2(CO3)(H2O)(OH)]Cl was refined from laboratory X-ray powder diffraction data using the Rietveld method [R3c, a=22.6791(5) Å, c=7.22336(14) Å, V=3217.52(11) Å3, Z=18, Rp=4.13%, Rwp=5.82%]. Dehydrated chlorartinite exhibits the same type of 3D honeycomb zeolite-like crystal structure with large channels as the hydrated form. Compared to the hydrated form, the channels of dehydrated chlorartinite are empty because of the removal of all non-coordinating water molecules with the cell volume shrinking by 4.0%, leading to a more distorted environment of the magnesium atoms.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandenburg, K. and Putz, H. (2006). “Match! Phase Identification from Powder Diffraction,” Version 1.4.Google Scholar
Cole, W. F. and Demediuk, T. (1955). “X-ray, thermal, and dehydration studies on magnesium oxychlorides,” Aust. J. Chem.AJCHAS 8, 234251.CrossRefGoogle Scholar
Demediuk, T., Cole, W. F., and Heuber, H. V. (1955). “Studies on magnesium and calcium oxychlorides,” Aust. J. Chem.AJCHAS 8, 215233.CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr.JACGAR10.1107/S0021889894004218 27, 892900.CrossRefGoogle Scholar
ICDD (2007). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, PA 19073-3272.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). “General Structure Analysis System (GSAS)” Report LAUR 86-748, Los Alamos National Laboratory.Google Scholar
LeBail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(88)90019-0 23, 447452.CrossRefGoogle Scholar
Maravelaki-Kalaitzaki, P. and Moraitou, G. (1999). “Sorel’s cement mortars. Decay susceptibility and effect on Pentelic marble,” Cem. Concr. Res.CCNRAI 29, 19291935.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Sorel, S. (1867). “On a new magnesium cement,” Compt. Rend.COREAF 65, 102104.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr.JACGAR10.1107/S0021889898006001 32, 281289.CrossRefGoogle Scholar
Sugimoto, K., Dinnebier, R. E., and Hanson, J. C. (2007). “Crystal structures of three dehydration products of Bischofite, MgCl2·nH2O (n=1,2,4) from in-situ synchrotron powder diffraction data,” Acta Crystallogr., Sect. B: Struct. Sci. (in press).CrossRefGoogle ScholarPubMed
Sugimoto, K., Dinnebier, R. E., and Schlecht, T. (2006). “Chlorartinite, a volcanic exhalation product also found in industrial magnesia screed,” J. Appl. Crystallogr.JACGAR 39, 739744.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr.JACGAR10.1107/S0021889887087090 20, 7983.CrossRefGoogle Scholar