Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T23:04:24.721Z Has data issue: true hasContentIssue false

Crystal structure of cephalexin monohydrate, C16H17N3O4S(H2O)

Published online by Cambridge University Press:  03 November 2020

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL60616, USA North Central College, 131 S. Loomis St., Naperville, IL60540, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, PA19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, PA19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of cephalexin monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Cephalexin monohydrate crystallizes in space group C2 (#5) with a = 27.32290(17), b = 11.92850(4), c = 16.75355(8) Å, β = 108.8661(4)°, V = 5166.99(3) Å3, and Z = 12. Although the general arrangement of molecules is similar to that in cephalexin dihydrate, the structural differences result in very different powder patterns. The crystal structure is characterized by alternating layers of hydrogen bonds and van der Waals contacts parallel to the bc-plane. The water molecules occur in clusters. Five of the six protons in the water molecules act as donors in O–H⋯O hydrogen bonds. The sixth hydrogen atom acts as a donor to two different phenyl ring carbon atoms to form bifurcated O–H⋯C hydrogen bonds. Each cephalexin molecule is a zwitterion, containing ammonium and carboxylate groups. The ammonium ions form N–H⋯O hydrogen bonds to carboxylate groups and water molecules, as well as to carbonyl groups. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1417.

Type
New Diffraction Data
Copyright
Copyright © 2020 International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dassault Systèmes (2014). Materials Studio 8.0 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S. and Blanton, T. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diffr. 39(4), 352360.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys 101, 1068610696.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
Jenkins, R. and Stevenson, G. (1990). “Cephalexin hydrate,” ICDD Private Communication; PDF entry 00-045-1537.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powd. Diffr. 29(3), 269273.CrossRefGoogle Scholar
Kemperman, G. J., de Gelder, R., Dommerholt, F. J., Raemakers-Franken, P. C., Klunder, A. J. H., and Zwanenburg, B. (1999). “Clathrate-type complexation of cephalosporins with β-naphthol,” Chem. Eur. J. 5, 21632168.3.0.CO;2-D>CrossRefGoogle Scholar
Kennedy, A. R., Okoth, M. O., Sheen, D. B., Sherwood, J. N., Teat, J., and Vrcelj, R. M. (2003). “Cephalexin: a channel hydrate,” Acta Cryst. C. 59, o650o652.CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS) (Los Alamos National Laboratory Report LAUR 86-784).Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.CrossRefGoogle ScholarPubMed
Louër, D. and Boultif, A. (2007). “Powder pattern indexing and the dichotomy algorithm,” Z. Kristallogr. Suppl. 2007, 191196.CrossRefGoogle Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0; from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
MDI (2014). Jade 9.5 (Materials Data Inc., Livermore, CA).Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.CrossRefGoogle ScholarPubMed
Pfeiffer, R. R., Yang, K. S., and Tucker, M. A. (1970). “Crystal pseudopolymorphism of cephaloglycin and cephalexin,” J. Pharm. Sci. 59, 18091814.CrossRefGoogle ScholarPubMed
Rammohan, A., and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Cryst. Sect. B: Cryst. Eng. Mater. 74, 239252.CrossRefGoogle ScholarPubMed
Silvestri, H. H. (1975). “Process for the production of cephalexin monohydrate,” U. S. Patent 3,862,186.Google Scholar
Sonneveld, E. (1989). “Cephalexin hydrate,” ICDD Grant-in-Aid; PDF entries 00-040-1652 and 1653.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.10.1107/S0021889898006001CrossRefGoogle Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Cryst. Sect. B: Struct. Sci. Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.CrossRefGoogle ScholarPubMed
Wavefunction, Inc. (2018). Spartan ’18 Version 1.2.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612.Google Scholar
Wheatley, A. M. and Kaduk, J. A. (2019). “Crystal structures of ammonium citrates,” Powd. Diffr. 34, 3543.CrossRefGoogle Scholar