Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T01:13:26.442Z Has data issue: false hasContentIssue false

Crystal data for Cu2Th4(MoO4)9 and isostructural compounds

Published online by Cambridge University Press:  10 January 2013

S. Launay
Affiliation:
Laboratoire de Cristallochimie du Solide, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
M. Quarton
Affiliation:
Laboratoire de Cristallochimie du Solide, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract

Cu2Th4(MoO4)9 is cubic: a=14.4856(1) Å, space group I4¯3d, Z=4. Its crystal structure was recently determined using a single crystal. The results of chemical study allow one to reject the existence of Li4Th7(MO4)16 and La(MO4)(ReO4) compounds with M=Mo, W, reported as isostructural with Cu2Th4(MoO4)9. Precise X-ray powder patterns are established for Cu2Th4(MoO4)9 and isotypic compounds Li2Th4(MoO4)9, Li2Th4(WO4)9, and La4(MoO4)3(ReO4)6.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argelès, D., Silvestre, J.-P., and Freundlich, W. (1978). “Synthèse et propriétés d’une nouvelle série de composés: Les molybdoperrhénates de lanthanides Ln(MoO 4)(ReO 4),Rev. Chim. Miner. 15, 248253andPDF cards 36-14 (Ce), 34-990 (Pr), 33-709 (La).Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Evain, M. (1992). “U-FIT program.” Institut des Matériaux, Nantes, France.Google Scholar
Launay, S., and Freundlich, W. (1977). “Molybdates doubles de thorium avec argent et cuivre monovalents,” C. R. Acad. Sc. Paris C285, 315316and PDF card 31-484.Google Scholar
Launay, S., Jaulmes, S., Lucas, F., and Quarton, M. (1997). “Cu 2Th 4(MoO 4)9: un nouveau squelette structural,” J. Solid State Chem. (accepted).Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS 83 is a development of “NBS*AIDS 80: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (U.S.) Tech. Note 1141.Google Scholar
National Bureau of Standards (U.S.) (1983a). Monogr. 25, 20 63 and PDF card 34-73.Google Scholar
National Bureau of Standards (U.S.) (1983b). Monogr. 25, 20 64 and PDF card 34-211.Google Scholar
Nusinovici, J. (1992). “PROFILE program,” Socabim, Paris, France.Google Scholar
Rodriguez-Carvajal, J. (1997). “FULLPROF: Rietveld, profile matching and integrated intensity refinement of x-ray and/or neutron data,” version 3.2 Laboratoire Léon Brillouin, C.E.A., Saclay, France.Google Scholar
Silvestre, J.-P., Argelès, D., and Freundlich, W. (1983). “Les molybdo et tungstoperrhénates de lanthanides Ln(XO 4)(ReO 4) avec X=Mo, W,” Rev. Chim. Miner. 20, 264273.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). “F N: A criterion for rating powder-diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Thoret, J. (1974). “Structure des phases AMo 2O 8 avec A=Zr, Hf, Th. Etude des systèmes ThB 2O 8-M 2BO 4 avec B=Mo, W; M=Li, Na ou K,” Rev. Chim. Miner. 11, 237261andPDF cards 26-1194 (Mo), 26-1195(W).Google Scholar