Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T22:01:27.623Z Has data issue: false hasContentIssue false

Corrugations of the basal planes in hexagonal boron nitride and their impact on the phase transition to cubic boron nitride

Published online by Cambridge University Press:  22 April 2015

C. Schimpf*
Affiliation:
TU Bergakademie Freiberg, Institute of Materials Science, G.-Zeuner-Straße 5, 09599 Freiberg, Germany
M. Schwarz
Affiliation:
TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Straße 29, 09599 Freiberg, Germany
C. Lathe
Affiliation:
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
E. Kroke
Affiliation:
TU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Straße 29, 09599 Freiberg, Germany
D. Rafaja
Affiliation:
TU Bergakademie Freiberg, Institute of Materials Science, G.-Zeuner-Straße 5, 09599 Freiberg, Germany
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Among the microstructure defects in hexagonal graphitic boron nitride, the basal plane corrugations are of high relevance for the sp2 to sp3 phase transition under high pressures (HP) and high temperatures (HT). A microstructure model is described, which is capable of quantifying the amplitude of the basal plane corrugations on the basis of the anisotropic X-ray diffraction line broadening. It is illustrated that this model correctly reproduces the specific shape of the diffraction lines from corrugated basal planes, i.e., the characteristic splitting of the 00l peaks. The results from XRD are verified by direct observation in the transmission electron microscope with high resolution. Subsequent HP/HT experiments were performed in order to highlight the difference in the phase transition kinetics between hexagonal boron nitride samples with different amount of basal plane corrugations. The effect of these microstructure defects on the conversion rate and on the obtained synthesis product is discussed.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O. L., Isaak, D. G. & Yamamoto, S. (1989). “Anharmonicity and the equation of state for gold,” J. Appl. Cryst. 65, 15341543.Google Scholar
Bosak, A., Serrano, J., Krisch, M., Watanabe, K., Taniguchi, T. & Kanda, H. (2006). “Elasticity of hexagonal boron nitride: Inelastic X-ray scattering measurements,” Phys. Rev. B 73, 041402R.CrossRefGoogle Scholar
Bundy, F. P. & Wentorf, R. H. (1963). “Direct transformation of hexagonal boron nitride to denser forms,” J. Chem. Phys. 38, 11441149.CrossRefGoogle Scholar
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum. 3, 223228.CrossRefGoogle Scholar
Corrigan, F. R. & Bundy, F. P. (1975). “Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures,” J. Chem. Phys. 63, 38123820.CrossRefGoogle Scholar
Dubrovinskaia, N., Solozhenko, V. L., Miyajima, N., Dmitriev, V., Kurakevych, O. O. & Dubrovinsky, L. (2007). “Superhard nanocomposites of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness,” Appl. Phys. Lett. 90, 101912.Google Scholar
Eremets, M. I., Takemura, K., Yusa, H., Golberg, D., Bando, Y., Blank, V. D., Sato, Y. & Watanabe, K. (1998). “Disordered state in first-order phase transitions: Hexagonal-to-cubic and cubic-to-hexagonal transitions in boron nitride,” Phys. Rev. B 57, 56555660.Google Scholar
Fahy, S., Louie, S. G. & Cohen, M. L. (1986). “Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond,” Phys. Rev. B 34, 11911199.Google Scholar
Hall, M. M., Veerarghavan, V. G., Rubin, H. & Winchell, P. G. (1977). “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Cryst. 10, 6668.Google Scholar
Holý, V., Pietsch, U. & Baumbach, T. (1999). “High Resolution X-Ray Scattering from Thin Layers and Multilayers,” Springer Tracts in Modern Physics vol. 149. Berlin: Springer.Google Scholar
Huang, J. & Zhu, Y. T. (2000). “Advances in the synthesis and characterization of boron nitride,” Defect Diffus. Forum 186–187, 132.Google Scholar
Kupcik, V., Grochowski, J. & Serda, P. (1994). “Twinning model for a new pseudo-hexagonal BN,” Z. Krist. 209, 236238.Google Scholar
Karki, B. B., Stixrude, L., Clark, S. J., Warren, M. C., Ackland, G. J. & Crain, J. (1997). “Structure and elasticity of MgO at high pressure,” Am. Min. 82, 5160.Google Scholar
Klimanek, P. & Kužel, R. (1988). “X-ray diffraction line broadening due to dislocations in non-cubic materials. I. General considerations in the case of elastic isotropy applied to hexagonal crystals,” J. Appl. Cryst. 21, 5966.Google Scholar
Kurdyumov, A. V., Pilyankevich, A. N. & Frantsevich, I. N. (1973). “Phase tranformations in boron nitride,” Powder Metallurg. Metal. Ceram. 12, 824829.CrossRefGoogle Scholar
Kurdyumov, A. V. (1976). “Stacking faults in graphitic boron nitride,” Sov. Phys. Cryst. 20, 596598.Google Scholar
Kurdyumov, A. V., Britun, V. F. & Petrusha, I. A. (1996). “Structural mechanisms of rhombohedral BN transformations into diamond-like phases,” Diam. Relat. Mater. 5, 12291235.Google Scholar
Leinenweber, K. D., Tyburczy, J. A., Sharp, T. G., Soignard, E., Diedrich, T., Petuskey, W. B., Wang, Y. & Mosenfelder, J. (2012). “Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies),” Am. Min. 97, 353368.Google Scholar
Paine, R. T. & Narula, C. K. (1990). “Synthetic routes to boron nitride,” Chem. Rev. 90, 7391.Google Scholar
Rafaja, D., Klemm, V., Motylenko, M., Schwarz, M. R., Barsukova, T., Kroke, E., Frost, D., Dubrovinsky, L. & Dubrovinskaia, N. (2008a). “Synthesis, microstructure and hardness of bulk ultrahard BN nanocomposites,” J. Mater. Res. 23, 981993.Google Scholar
Rafaja, D., Dopita, M., Masimov, M., Klemm, V., Wendt, N. & Lengauer, W. (2008b). “Analysis of local composition gradients in the hard-phase grains of cermets using a combination of X-ray diffraction and electron microscopy,” Int. J. Refract. Met. Hard Mater. 26, 263275.CrossRefGoogle Scholar
Rafaja, D., Wüstefeld, C., Motylenko, M., Schimpf, C., Barsukova, T., Schwarz, M. R. & Kroke, E. (2012). “Interface phenomena in (super)hard nitride nanocomposites: from coatings to bulk materials,” Chem. Soc. Rev. 41, 50815101.Google Scholar
Schimpf, C., Motylenko, M. & Rafaja, D. (2013). “Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis,” Mater. Char. 86, 190199.Google Scholar
Solozhenko, V. L. (1995). “Boron nitride phase diagram. State of the art,” High Pressure Res. 13, 199214.CrossRefGoogle Scholar
Stokes, A. R. & Wilson, A. J. C. (1944). “The diffraction of X-rays by distorted crystal aggregates – I,” Proc. Phys. Soc. 56, 174181.Google Scholar
Tateyama, Y., Ogitsu, T., Kusakabe, K. & Tsuneyuki, S. (1996). “Constant-pressure first-principles studies on the transition states of the graphite-diamond transformation,” Phys. Rev. B 54, 1499415001.Google Scholar
Ueno, M., Hasegawa, K., Oshima, R., Onodera, A., Shimomura, O., Takemura, K., Nakae, H., Matsuda, T. & Hirai, T. (1992). “Room-temperature transition of rhombohedral-type Boron Nitride under high static pressure,” Phys. Rev. B 45, 1022610232.Google Scholar
Warren, B. E. (1969). X-ray diffraction. Reading/Mass.: Addison-Wesley.Google Scholar
Wentorf, R. H. (1957). “Cubic form of Boron Nitride,” J. Chem. Phys. 26, 956.Google Scholar
Williams, D. B. & Carter, C. B. (2009). Transmission Electron Microscopy – A Textbook for Materials Science. New York: Springer.CrossRefGoogle Scholar