No CrossRef data available.
Article contents
Complementarity of experimental and numerical methods for determining residual stress states
Published online by Cambridge University Press: 06 March 2012
Abstract
Residual stress states in engineering structures are usually determined by measuring components of stress tensors with depth below the material surface. There are destructive and nondestructive methods to measure strain tensor components and convert them into stress tensor components by a variety of techniques derived from constitutive (material) equations. In this study, four methods for determining the strain tensor components are presented: X-ray diffraction method (XRDM), magnetic Barkhausen noise method (MBNM), hole drilling method (HDM), and cut-and-section method (CSM); the first two are nondestructive, and the third and fourth are semidestructive and destructive, respectively. A complementarity of the experimental and two numerical methods such as boundary element method and finite element method is explained. An application of the experimental and numerical methods to measure residual stress states in an industrial component, an L-shaped part of a supporting column in a high voltage structure, is presented.
- Type
- Methods For Residual Stress Analysis
- Information
- Copyright
- Copyright © Cambridge University Press 2009