Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T05:21:52.541Z Has data issue: false hasContentIssue false

A comparative study of Rietveld phase analysis of cement clinker using neutron, laboratory X-ray, and synchrotron data

Published online by Cambridge University Press:  01 March 2012

Vanessa K. Peterson*
Affiliation:
University of Technology, Sydney, Australia
Abhi S. Ray
Affiliation:
University of Technology, Sydney, Australia
Brett A. Hunter
Affiliation:
Australian Nuclear Science and Technology Organisation, Menai, Australia
*
a)a)Electronic mail: [email protected]

Abstract

Rietveld refinement using neutron, laboratory X-ray, and synchrotron powder diffraction data of NIST SRM clinker 8488 was performed. Quantitative phase analysis (QPA) results were compared between data, and with other studies. QPA results for the main phases in the clinker were found to be in agreement between the different data used here, and in and other studies, although the QPA of the tricalcium silicate polymorphs was shown to be inconsistent. The QPA results for the tricalcium aluminate phase varied between data types, and the neutron data were unable to distinguish this phase.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berliner, R., Ball, C., and West, P. B. (1995). “Neutron powder diffraction studies of Portland cement and cement compounds,” in Neutron Scattering in Materials Science II, Proceedings of the Materials Research Society Symposium, Boston, MA, November 1994, edited by Neumann, D. A., Russell, T. P., and Wuensch, B. J. (Materials Research Society, PA, 1995), Vol. 376, pp. 487492.Google Scholar
Colville, A. A. and Geller, S. (1972). “Crystal structures of Ca2Fe1.43Al0.57O5 and Ca2Fe1.28Al0.72O5,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 10.1107/S0567740872007733 B28, 31963200.CrossRefGoogle Scholar
Cookson, D. J. (1998). “Calculation of absolute intensities from X-ray imaging plates,” J. Synchrotron Radiat. JSYRES 10.1107/S0909049598008334 5, 13751382.CrossRefGoogle ScholarPubMed
De la Torre, A. G. and Aranda, M. A. G. (2003). “Accuracy in Rietveld quantitative phase analysis of Portland cements,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 36, 11691176.Google Scholar
De la Torre, A. G., Cabeza, A., Calvente, A., Bruque, S., and Aranda, M. A. G. (2001). “Full phase analysis of Portland clinker by penetrating synchrotron powder diffraction,” Anal. Chem. ANCHAM 10.1021/ac0006674 73, 151156.CrossRefGoogle ScholarPubMed
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889886089458 19, 267272.CrossRefGoogle Scholar
Feret, B. and Feret, C. F. (1999). “CemQUANT® software mathematical modeling in quantitative phase analysis of Portland cement,” Cem. Concr. Res. CCNRAI 29, 16271633.CrossRefGoogle Scholar
Füllmann, T., Walenta, G., Pöllmann, H., Gimenez, M., Lauzon, C., Hagopian-Babikian, S., Dalrymple, T., and Noon, P. (2001). “Quantitative Rietveld analysis of Portland cement clinkers and Portland cements using the TOPAS software—Applications as a method of automated quality and process control in industrial production—part 1,” International Cement Research 1, 4143.Google Scholar
Golovastikov, N. I., Matveera, R. G., and Belov, N. V. (1975). “Crystal structure of the tricalcium silicate 3CaO.SiO2=C3S,” Sov. Phys. Crystallogr. SPHCA6 20, 721729.Google Scholar
Hill, R. J. and Howard, C. J. (1987). “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889887086199 20, 467474.CrossRefGoogle Scholar
Hunter, B. (1998). “Rietica—A visual Rietveld program,” International Union of Crystallography Commission on Powder Diffraction Newsletter 20, 21.Google Scholar
Ilinets, A. M., Malinovskii, Y., and Nevskii, N. N. (1985). “Crystal structure of the rhombohedral modification of tricalcium silicate Ca3SiO5,” Dokl. Akad. Nauk SSSR DANKAS 281, 191193.Google Scholar
Jupe, A. C., Cockroft, J. K., Barnes, P., Colston, S. L., Sankar, G., and Hall, C. (2001). “The site occupancy of Mg in the brownmillerite structure and its effect on hydration properties: An X-ray/neutron diffraction and EXAFS study,” J. Appl. Crystallogr. JACGAR 34, 5561.CrossRefGoogle Scholar
Mumme, W. G. (1995). “Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis,” Neues Jahrb. Mineral., Abh. NJMIAK 4, 145160.Google Scholar
Mumme, W. G., Hill, R. J., Bushnell-Wye, G., and Segnit, E. R. (1995). “Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate,” Neues Jahrb. Mineral., Abh. NJMIAK 169, 3568.Google Scholar
Nishi, F. and Takèuchi, Y. (1975). “The Al6O18 rings of tetrahedra in the structure of Ca8.5NaAl6O18,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B31, 11691173.Google Scholar
Nishi, F., Takèuchi, Y., and Maki, I. (1985). “Tricalcium silicate Ca3O[SiO4]: The monoclinic superstructure,” Z. Kristallogr. ZEKRDZ 172, 297314.CrossRefGoogle Scholar
Oftedal, I. (1927). “Die Gitterkonstanten von CaO, CaS, CaSe, CaTe,” 128, 135158.CrossRefGoogle Scholar
Peterson, V. K. (2003). PhD Thesis. “Powder diffraction investigations of cement and its major component, tricalcium silicate,” University of Technology, Sydney, Australia.Google Scholar
Peterson, V. K. (2004). “A Rietveld refinement investigation of a Mg-stabilized triclinic tricalcium silicate using synchrotron X-ray powder diffraction data,” Powder Diffr. PODIE2 10.1154/1.1810155 19, 356358.CrossRefGoogle Scholar
Peterson, V. K., Hunter, B., and Ray, A. (2004). “Tricalcium silicate T1 and T2 polymorphic investigations: Rietveld refinement at various temperatures using synchrotron powder diffraction,” J. Am. Ceram. Soc. JACTAW 87, 16251634.Google Scholar
Peterson, V. K., Hunter, B., Ray, A., and Aldridge, L. P. (2002). “Rietveld refinement of neutron, synchrotron and combined powder diffraction data of cement clinker,” Appl. Phys. A: Mater. Sci. Process. APAMFC 74, S1409S1411.CrossRefGoogle Scholar
Pritula, O., Smṟok, L., Többens, D. M., and Langer, V. (2004). “X-ray and neutron Rietveld quantitative phase analysis of industrial Portland cement clinkers,” Powder Diffr. PODIE2 10.1154/1.1782652 19, 232239.CrossRefGoogle Scholar
Rasberry, S. D. (1989). National Institute of Standards and Technology, Report of Investigations, Reference Materials 8486, 8487, 8488, Portland Cement Clinker. Gaithersburg, MD, NIST.Google Scholar
Sabine, T. M., Hunter, B. A., Sabine, W. R., and Ball, C. J. (1998). “Analytical expressions for the transmission factor and peak shift in absorbing cylindrical specimens,” J. Appl. Crystallogr. JACGAR 31, 4751.CrossRefGoogle Scholar
Scrivener, K. L., Füllmann, T., Gallucci, E., Walenta, G., and Bermejo, E. (2004). “Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods,” Cem. Concr. Res. CCNRAI 34, 15411547.CrossRefGoogle Scholar
Stuzman, P. and Leigh, S., “Phase analysis of hydraulic cements by X-ray powder diffraction: ASTM precision, bias, and qualification,” Journal of ASTM International, In review.Google Scholar
Suherman, P. M., van Riessen, A., O’Connor, B., Deyu, L., Bolton, D., and Fairhurst, H. (2002). “Determination of amorphous phase levels in Portland cement clinker,” Powder Diffr. PODIE2 10.1154/1.1471518 17, 178185.CrossRefGoogle Scholar
Taylor, H. F. W. (1997). Cement Chemistry, Telford, London.CrossRefGoogle Scholar
Taylor, J. C., Hinczak, I., and Matulis, C. E. (2000). “Rietveld full-profile quantification of Portland cement clinker: The importance of including a full crystallography of the major phase polymorphs,” Powder Diffr. PODIE2 15, 718.CrossRefGoogle Scholar
Walenta, G. and Füllmann, T. (2004). “Advances in quantitative XRD analysis for clinker, cements, and cementitious additions,” Powder Diffr. PODIE2 10.1154/1.1649328 19, 4044.CrossRefGoogle Scholar