Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T13:33:54.440Z Has data issue: false hasContentIssue false

Characterization of nickel doped Zn7Sb2O12 spinel phase using Rietveld refinement

Published online by Cambridge University Press:  06 March 2012

L. Gama
Affiliation:
Laboratório de Cerâmica, Departamento de Engenharia de Materiais, Centro de Ciências e Tecnologia–Universidade Federal da Paraíba, Campina Grande-PB, Brazil
C. O. Paiva-Santos*
Affiliation:
Laboratório Computacional de Análises Cristalográficas e Cristalinas, Instituto de Química–Universidade Estadual Paulista, Araraquara SP, Brazil
C. Vila
Affiliation:
Laboratório Interdisciplinar de Eletroquímica e Cerâmica, Departamento de Química, Centro Multidisciplinar para o Desenvolvimento de Materiais Cerâmicos, Universidade Federal de São Carlos, São Carlos SP, Brazil
P. N. Lisboa-Filho
Affiliation:
Laboratório Interdisciplinar de Eletroquímica e Cerâmica, Departamento de Química, Centro Multidisciplinar para o Desenvolvimento de Materiais Cerâmicos, Universidade Federal de São Carlos, São Carlos SP, Brazil
E. Longo
Affiliation:
Laboratório Interdisciplinar de Eletroquímica e Cerâmica, Departamento de Química, Centro Multidisciplinar para o Desenvolvimento de Materiais Cerâmicos, Universidade Federal de São Carlos, São Carlos SP, Brazil
*
a)Author to whom correspondence should be addressed; electronic mail: [email protected]

Abstract

Zn7Sb2O12 is known to adopt an inverse spinel crystal structure, in which Zn2+ occupies the eight tetrahedral positions and Sb5+ and Zn2+ randomly occupy the 16 octahedral positions. Samples of Zn7−xNixSb2O12 (x=0, 1, 2, 3, and 4) were synthesized using a modified polymeric precursor method, known as the Pechini method. The crystal structure of the powders was characterized by Rietveld refinement with X-ray diffraction data. The results show that for x=0, 1, and 2 Ni substitutes for Zn2+ in the octahedral sites, and that for x=3 and 4 it is assumed that Ni2+ replaces Zn2+ ions in both the octahedral and tetrahedral positions. It is also observed for x=3 and 4 the formation of two spinel phases.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cormack, A. N., Lewis, G. V., Parker, S. C., and Catlow, C. R. A. (1988). “On the cation distribution of spinels,” J. Phys. Chem. Solids JPCSAW 49, 5357. jpx, JPCSAW CrossRefGoogle Scholar
Ezhilvalavan, S., and Kutty, T. R. N. (1996). “Low voltage varistors based on zinc antimony spinel Zn7Sb2O12,Appl. Phys. Lett. APPLAB 68, 2693. apl, APPLAB CrossRefGoogle Scholar
Lisboa-Filho, P. N., Gama, L., Paiva-Santos, C. O., Varela, J. A., Ortiz, W. A., and Longo, E. (2000). “Crystallographic and magnetic structure of polycrystalline Zn7−xNixSb2O12 spinels,” Mater. Chem. Phys. MCHPDR 65, 208211. mcp, MCHPDR CrossRefGoogle Scholar
Marciniak, H. (1997). “DMPLOT–Plot view program for Rietveld refinement method, Version 3.48.”Google Scholar
Navrotsky, A., and Kleppa, O. J. (1967). “Thermodynamics of cation distributions in single spinel,” J. Inorg. Nucl. Chem. JINCAO 29, 27012714. jin, JINCAO CrossRefGoogle Scholar
Pechini, M. (1967). U.S. Patent No. 3.330.697–1967.Google Scholar
Poix, P. (1965). “Sur une methode de determination des distances cation-oxygene dans les oxydes mixtes a structure spinelle—application des valeurs a quelques cas particuliers,” Bull. Soc. Chim. Fr. BSCFAS 4, 1085. bsc, BSCFAS Google Scholar
Poleti, D., Vasovic, C., Karanovic, L., and Brankovic, Z. (1994). “Synthesis and characterization of ternary Zinc–Antimony–Transition metal spinels,” J. Solid State Chem. JSSCBI 112, 3944. jss, JSSCBI CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6569. acr, JACGAR CrossRefGoogle Scholar
Sawada, H. (1995). “An electron density residual study of magnesium aluminium oxide spinel,” Mater. Res. Bull. MRBUAC 30, 341345. mrb, MRBUAC CrossRefGoogle Scholar
Schiessl, W., Potzel, W., Karzel, H., Steiner, M., Kalvius, G. M., Martin, A., Krause, M. K., Halevy, I., Gal, J., Scha¨fer, W., Will, G., Hillberg, M., and Wa¨ppling, R. (1996). “Magnetic properties of ZnFe2O4 spinel,” Phys. Rev. B PRBMDO 53, 91439152. prb, PRBMDO CrossRefGoogle ScholarPubMed
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in hallides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN A32, 751767. aca, ACACBN CrossRefGoogle Scholar
Sickafus, K. E., Wills, J. M., and Grimes, N. W. (1999). “Structure of spinel,” J. Am. Ceram. Soc. JACTAW 82, 32793292. jac, JACTAW CrossRefGoogle Scholar
Young, R. A., Larson, A. C., and Paiva-Santos, C. O. (1999). “User’s guide to program DBWS-9807a for Rietveld analysis of X-Ray and neutron powder diffraction patterns with a PC and various other computers,” School of Physics Georgia Institute of Technology Atlanta, GA, 1999.Google Scholar
Young, R. A., and Sakthivel, A. (1988). “Bimodal distributions of profile-broadening effects in Rietveld refinement,” J. Appl. Crystallogr. JACGAR 21, 416425. acr, JACGAR CrossRefGoogle Scholar
Young, R. A., Sakthivel, A., Moss, T. S., and Paiva-Santos, C. O. (1995). “DBWS-9411, an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers,” J. Appl. Crystallogr. JACGAR 28, 366367. acr, JACGAR CrossRefGoogle Scholar
Young, R. A., and Wiles, D. B. (1982). “Profile shape functions in Rietveld refinements,” J. Appl. Crystallogr. JACGAR 15, 430438. acr, JACGAR CrossRefGoogle Scholar