Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T17:11:48.246Z Has data issue: false hasContentIssue false

Characterization of nanograined powder samples using the Rietveld method applied to electron diffraction ring patterns

Published online by Cambridge University Press:  12 April 2017

A. Serafini*
Affiliation:
Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Italy
L. Lutterotti
Affiliation:
Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Italy
S. Gross
Affiliation:
Dipartimento di Scienze Chimiche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia – ICMATE-CNR, Università degli Studi di Padova, Italy
S. Gialanella
Affiliation:
Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Italy
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A full-pattern fitting procedure based on the Rietveld method was applied to electron diffraction ring patterns of a two-phase system, exhibiting the co-presence of zinc sulfide (sphalerite) and zinc oxide (Wurtzite). Bright and dark field (DF) images reveal the presence of micrometric aggregates, composed of quasi-spherical nanosized crystallites. These conventional transmission electron microscopy imaging methods provide a general morphological characterization of the specimens although, in the present case, they are not suitable for a detailed characterization of the microstructural features of the analyzed samples. Owing to the overlap and broadening of the diffraction rings of the two phases, DF images cannot provide a satisfactory picture of the individual crystallites of each single phase. To overcome this limit, the mentioned Rietveld approach was applied to model the electron diffraction data. The crystalline domain size and relevant shapes for both phases were successfully evaluated using the proposed methodological approach. The excellent results obtained in the microstructural characterization of the nanostructured multiphase samples demonstrate the capability of this technique, that may represents a fully quantitative method for the routine characterization of crystalline nanomaterials.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baer, D. R., Gaspar, D. J., Nachimuthu, P., Techane, S. D., and Castner, D. G. (2010). “Application of surface chemical analysis tools for characterization of nanoparticles,” Anal. Bioanal. Chem. 396, 9831002.Google Scholar
Bell, N. C., Minelli, C., Tompkins, J., Stevens, M. M., and Shard, A. G. (2012). “Emerging techniques for submicrometer particle sizing applied to Stober silica,” Langmuir 28, 1086010872.Google Scholar
Blackman, M. (1939). “On the intensities of electron diffraction rings,” Proc. R. Soc. Lond. A 173, 6882.Google Scholar
Boullay, P., Lutterotti, L., Chateigner, D., and Sicard, L. (2014). “Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns,” Acta Crystallogr. Sect. A, Found. Adv. 70, 448456.Google Scholar
Dieckmann, Y., Cölfen, H., Hofmann, H., Petri-Fink, A., Hofmann, H., Cölfen, H., Dieckmann, Y., Cölfen, H., Hofmann, H., and Petri-Fink, A. (2009). “Particle size distribution measurements of manganese-doped ZnS nanoparticles,” Anal. Chem. 81, 38893895.Google Scholar
Dolcet, P., Maurizio, C., Casarin, M., Pandolfo, L., Gialanella, S., Badocco, D., Pastore, P., Speghini, A., and Gross, S. (2015). “An effective two-emulsion approach to the synthesis of doped ZnS crystalline nanostructures,” Eur. J. Inorg. Chem. 4, 706714.Google Scholar
Gemmi, M., Voltolini, M., Ferretti, A. M., and Ponti, A. (2011). “Quantitative texture analysis from powder-like electron diffraction data,” J. Appl. Crystallogr. 44, 454461.Google Scholar
Giorgetti, E., Marsili, P., Cicchi, S., Lascialfari, L., Albiani, M., Severi, M., Caporali, S., Muniz-Miranda, M., Pistone, A., and Giammanco, F. (2015). “Preparation of small size palladium nanoparticles by picosecond laser ablation and control of metal concentration in the colloid,” J. Colloid Interface Sci. 442, 8996.Google Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography open database–an open-access collection of crystal structures”, J. Appl. Crystallogr. 42(4), 726729.Google Scholar
Hassellöv, M., Readman, J. W., Ranville, J. F., and Tiede, K. (2008). “Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles,” Ecotoxicology 17, 344361.Google Scholar
Ischia, G., Wenk, H.-R., Lutterotti, L., and Berberich, F. (2005). “Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images,” J. Appl. Crystallogr. 38, 377380.Google Scholar
Jain, P. K., Huang, X., El-Sayed, I. H., and El-Sayed, M. A. (2008). “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 15781586.Google Scholar
Kim, J. G., Seo, J. W., Cheon, J., and Kim, Y. J. (2009). “Rietveld analysis of nano-crystalline MnFe2O4 with electron powder diffraction,” Bull. Korean Chem. Soc. 30, 183187.Google Scholar
Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., and Lead, J. R. (2008). “Nanomaterials in the environment: behavior, fate, bioavailability, and effects.,” Environ. Toxicol. Chem. 27, 18251851.Google Scholar
Lábár, J. L. (2008). “Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films. I. Principles,” Microsc. Microanal. 14, 287295.Google Scholar
Lábár, J. L. (2009). “Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, part II: implementation,” Microsc. Microanal. 15, 2029.CrossRefGoogle ScholarPubMed
Lábár, J. L., Adamik, M., Barna, B. P., Czigány, Z., Fogarassy, Z., Horváth, Z. E., Geszti, O., Misják, F., Morgiel, J., Radnóczi, G., Sáfrán, G., Székely, L., and Szüts, T. (2012). “Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films. III. Application examples,” Microsc. Microanal. 18, 406420.CrossRefGoogle ScholarPubMed
Lascialfari, L., Marsili, P., Caporali, S., Muniz-Miranda, M., Margheri, G., Serafini, A., Brandi, A., Giorgetti, E., and Cicchi, S. (2014). “Carbon nanotubes/laser ablation gold nanoparticles composites,” Thin Solid Films 569, 9399.CrossRefGoogle Scholar
Linkov, P., Artemyev, M., Efimov, A. E., and Nabiev, I. (2013). “Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials,” Nanoscale 5, 87818798.CrossRefGoogle Scholar
Linsinger, T., Roebben, G., Gilliland, D., Calzolai, L., Rossi, F., Gibson, N., and Klein, C. (2012). Requirements on Measurements for the Implementation of the European Commission Definition of the Term ‘Nanomaterial (JRC Reference Report, EUR 25404 EN).Google Scholar
Lutterotti, L. (2010). “Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction”, Nucl. Instrum. Methods Phys. Res.: B, Beam Interact. Mater. Atoms 268(3), 334340.Google Scholar
Lutterotti, L., Bortolotti, M., Ischia, G., Lonardelli, I., and Wenk, H. R. (2007). “Rietveld texture analysis from diffraction images,” Z. Kristallogr. Suppl. 26, 125130.Google Scholar
Lutterotti, L., Vasin, R., and Wenk, H. R. (2014). “Rietveld texture analysis from synchrotron diffraction images. I. Calibration and basic analysis,” Powder Diffraction 29(1), 7684.CrossRefGoogle Scholar
Peng, L. M., Ren, G., Dudarev, S. L., and Whelan, M. J. (1996). “Robust parameterization of elastic and absorptive electron atomic scattering factors,” Acta Crystallogr. Sect. A Found. Crystallogr. 52, 257276.Google Scholar
Popa, N. C. (1998). “The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement,” J. Appl. Crystallogr. 31, 176180.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9, 671675.Google Scholar
Silvestre, C., Duraccio, D., and Cimmino, S. (2011). “Food packaging based on polymer nanomaterials,” Prog. Polym. Sci. 36, 17661782.Google Scholar
Simon, P. and Gogotsi, Y. (2008). “Materials for electrochemical capacitors,” Nat. Mater. 7, 845854.Google Scholar
Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., Skorobogatiy, M., Khademhosseini, A., and Yun, S. H. (2016). “Nanotechnology in textiles,” ACS Nano 10, 30423068.Google Scholar
Supplementary material: File

Serafini supplementary material

Serafini supplementary material

Download Serafini supplementary material(File)
File 23.6 KB