Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T11:48:30.103Z Has data issue: false hasContentIssue false

X-ray powder diffraction of mineral pigments and medicines from the 17th century pharmacy (Spezieria) Santa Maria della Scala in Rome, Italy

Published online by Cambridge University Press:  25 October 2018

Giovanni Cavallo*
Affiliation:
Institute of Materials and Constructions, University of Applied Sciences and Arts – Supsi, Campus Trevano, 6952 Canobbio, Switzerland Department of Earth and Environmental Sciences, University of Pavia, via Ferrata 1, 27100 Pavia, Italy
Maria Luisa Vázquez de Ágredos Pascual
Affiliation:
Faculty of History and Geography, University of Valencia, Av. Blasco Ibañez 28, 46010 Valencia, Spain
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The pharmacy (spezieria) Santa Maria della Scala was founded in Rome by the Discalced Carmelites Order in the 17th century, and during the 18th and 19th centuries it became the official supplier of medicines for Vatican Popes. The laboratory and the cases of this spezieria still preserve glass jars with organic and inorganic materials, which were presumably used for medicine and artistic material preparation, whose composition is unknown to date. A research project was initiated with the aim to study the stored materials and the role that the pharmacy played in regional, national and international contexts. In this manuscript, the compounds were analysed through X-ray powder diffraction with the scope to derive the quantitative mineralogical composition of the inorganic fraction, their possible use in pharmacopoeias and as mineral pigments. Most of the analysed samples are salts (sulphates, chlorides, carbonates, phosphates, borates, sulphides), sulphates being the predominant class; oxides were also detected.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Burla, M. C., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G., and Rizzi, R. (2001). “Quanto. A Rietveld program for quantitative phase analysis for polycrystalline mixtures,” J. Appl. Crystallogr. 34, 392397.Google Scholar
Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., and Rizzi, R. (2015). “Qualx2.0: a qualitative phase analysis software using the freely database POW_COD,” J. Appl. Crystallogr. 48, 598603.Google Scholar
Ambers, J. (2004). “Raman analysis of pigments from the Egyptian Old Kingdom,” Raman Spectrosc. 35(8–9), 768773.Google Scholar
Burgio, L., Clark, R. J. H., and Firth, S. (2001). “Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products,” Analyst 126, 222227.Google Scholar
Burmester, A., Haller, U., and Krekel, C. (2010). “Pigmenta et colores: the artist's palette in pharmacy price list from Liegnitz (Silesia),” in Trade in Artists’ Materials: Markets and Commerce in Europe to 1700, edited by Kirby, J., Nash, S. and Cannon, J. (Archetype Publications, London), pp. 314324.Google Scholar
Carbonell, F. (1805). Elementos de Farmacia fundados en los principios de la Química Moderna, Oficina de Francisco Ifern y Oriol, Barcelona.Google Scholar
Cavallo, G. (2016). Characterisation, sourcing, and processing of Upper Palaeolithic ochre in the Lessini Mountains (NE Italy). PhD Dissertation, University of Pavia, Italy.Google Scholar
Chalmin, E. (2003). Caracterisation des oxydes de manganese et usage des pigments noirs au Paleolitique superieur. PhD dissertation (in French), Géologie appliquée. Université de Marne la Vallée.Google Scholar
Colapinto, L. (2007). “Lectura Simplicium dalla botanica antica alle farmacopee del XVII e XVIII secolo a Roma,” in Erbe e speziali. I laboratori della salute, edited by Margherita Breccia e Simonetta Buttò (Aboca Museum Edizioni, Sansepolcro), pp. 1729.Google Scholar
Dooryhée, E., Martinetto, P., Walter, Ph., and Anne, M. (2004). “Synchrotron X-ray analyses in art and archaeology,” Radiat. Phys. Chem. 71, 863868.Google Scholar
Fezei, R., Hammi, H., and M'nif, A. (2008a). “Study of the sylvite transformation into arcanite at 25 °C,” World J. Agric. Sci. 4(3), 390397.Google Scholar
Fezei, R., Hammi, H., and M'nif, A. (2008b). “Optimization of sylvite transformation into arcanite using experimental design methodology,” J. Chemom. 22, 122129.Google Scholar
Frison, R., Cernuto, G., Cervellino, A., Zaharko, O., Colonna, G. M., Guagliardi, A., and Masciocchi, N. (2013). “Magnetite–maghemite nanoparticles in the 5–15 nm range: correlating the core-shell composition and the surface structure to the magnetic properties. A total scattering study,” Chem. Mater. 25, 48204827.Google Scholar
Frondel, C. (1950). “Notes of arcanite, ammonian aphthitalite and oxammite,” Am. Mineral. 35(7–8), 596598.Google Scholar
Gamberini, M. C., Baraldi, C., Palazzoli, F., Ribechini, E., and Baraldi, P. (2008). “Microraman and infrared spectroscopic characterization of ancient cosmetics,” Vib. Spectrosc. 47, 8290.Google Scholar
Gettens, R. J., Kühn, H., and Chase, W. T. (1993 a). “Lead white,” in Artists’ Pigments, edited by Roy, A. (National Gallery of Art, Oxford University Press, Washington, DC), Vol. 2, pp. 6781.Google Scholar
Gettens, R. J., Feller, R. L., and Chase, W. T. (1993 b). “Vermilion and cinnabar,” in Artists’ Pigments, edited by Roy, A. (National Gallery of Art, Oxford University Press, Washington, DC), Vol. 2, pp. 159182.Google Scholar
Giachi, G., De Carolis, E., and Pallecchi, P. (2009). “Raw materials in Pompeian paintings: characterization of some colours from the archaeological site,” Mater. Manuf. Processes 24, 10151022.Google Scholar
Goncharik, I. I., Shevchuk, V. V., Krut'ko, N. P., Smychnik, A. D., and Kudina, O. A. (2014). Synthesis of potassium sulfate by conversion of potassium chloride and magnesium sulfate. Russ. J. Appl. Chem. 87, 18041809.Google Scholar
Gray, F. (1821). Treatise on Pharmacology in General; including not only the drugs and compounds which are used by practitioners of medicine, but also those which are sold by chemist, druggist, and herbalist, for other purposes. Printed by Thomas and George Underwood, London.Google Scholar
Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F., Qiurós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A. (2009). “Crystallography Open Database – an open-access collection of crystal structures,” J. Appl. Crystallogr. 42(4), 726729.Google Scholar
Henshilwood, C. S., d'Errico, F., van Niekerk, K. L., Coquinot, Y., Jacobs, Z., Luritzen, S.-E., Menu, M., and García-Moreno, R. (2011). “A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa,” Science 334, 219.Google Scholar
Hernández de Gregorio, M. (1803). Diccionario elemental de farmacia, botánica y materia médica, o Aplicaciones de los Fundamentos de la Química Moderna á la Farmacia en todos sus Ramos. Imprenta Real, Madrid.Google Scholar
Junius, M. M. (1986). Practical handbook of plant alchemy. Translated by Léon Muller.Google Scholar
Kirby, J. O., Spring, M., and Higgitt, C. (2005). “The technology of red lake pigment manufacture: study of the dyestuff substrate,” Natl. Gallery Tech. Bull. 26, 7187.Google Scholar
Liu, J., Shi, J.-Z., Yu, L. M., Goyer, R. A., and Waalkes, M. P. (2008). “Mercury in traditional medicines: is cinnabar toxicologically similar to other mercurial?,” Exp. Biol. Med. J. (Maywood) 233(7), 810817.Google Scholar
Matin, M. and Pollard, A. M. (2017). “From ore to pigment: a description of the minerals and an experimental study of cobalt processing from the Kāshān mine, Iran,” Archaeometry 59(4), 731746.Google Scholar
Matthew, L. and Berrie, B. (2010). “‘Memoria de colori che bisognino torre a vinetia’: venice as a centre for the purchase of painters’ colours,”. in Trade in Artists’ Materials: Markets and Commerce in Europe to 1700, edited by Kirby, J., Nash, S., Cannon, J. (Archetype Publications, London), pp. 245252.Google Scholar
Mazzocchin, G. A., Orsega, E. F., Baraldi, P., and Zanini, P. (2006). “Aragonite in Roman wall paintings of the VIII Regio, Aemilia, and X regio, Venetia et Histria,” Ann. Chim. 96, 377387.Google Scholar
Mereiter, K., Zeimann, J., and Hewat, A. W. (1992). Eglestonite, [Hg2]3Cl3O2H: confirmation of the chemical formula by neutron powder diffraction. Am. Mineral. 77, 839842.Google Scholar
Paláu y Verdéra, A. (1784). Parte Práctica de Botánica del Caballero Cárlos Linneo, que comprehende las clases, órdenes, géneros, especies y variedades de las plantas, con sus caracteres genéricos y específicos, sinónimos más selectos, nombres triviales, lugares donde nacen y propriedades, Tomo I, Imprenta Real, Madrid.Google Scholar
Pedrazzini, C. (1934). La farmacia storica ed artística italiana. Milano. Edizioni Vittoria.Google Scholar
Photos-Jones, E., Keane, C., Jones, A. X., Stamatakis, M., Robertson, P., Hall, A. J., and Leanord, A. (2015). “Testing dioscorides’ medicinal clays for their antibacterial properties: the case of Samian Earth,” J. Archaeol. Sci. 57, 257267.Google Scholar
Spotti, A. (2007). “La Spezieria di Santa Maria della Scala,” in Erbe e speziali. I laboratori della salute, edited by Margherita Breccia e Simonetta Buttò (Aboca Museum Edizioni, Sansepolcro), pp. 191198.Google Scholar
Strocchia, S. T. (2011). “The nun apothecaries of Renaissance Florence: marketing medicines in the convent,” Renaiss. Stud. 25(5), 627647.Google Scholar
Testi, G. (1980). Dizionario di Alchimia e chimica Antiquaria, Paracelso. Edizioni Mediterranee, Roma.Google Scholar
Vázquez de Ágredos Pascual, M. L., Rojo Iranzo, L., Van-Elslande, E., Walter, Ph., Pagiotti, R., and Cavallo, G. (2017). “Science, art and mythological Greco-Roman beliefs in the ancient pharmacy of Santa Maria delle Scala, Rome,” in Kermes Books: 9th European Symposium on Religious Art, Restoration & Conservation –Proceeding Book, edited by Rusu Mircea Teodor Nechita, I., Niculina, Elena y Apostolescu, Nicolae (Lexis Compagnia Editoriale, Torino), pp. 116120.Google Scholar
Vázquez de Ágredos Pascual, M. L., Cavallo, G., Rojo Iranzo, L., Van-Elslande, E., Walter, Ph., and Pagiotti, R. (2018). “Tradition and renovation in the ancient drugs of the Spezieria di Santa maria della scala (Rome) between scientific knowledge and magical thought,” Eur. J. Sci. Theol. 14(2), 312.Google Scholar
Velo, J. (1984). “Ochre as medicine: a suggestion for the interpretation of the archaeological record,” Curr. Anthropol. 25(5), 674.Google Scholar
Welcomme, E., Walter, Ph., van Elslande, E., and Tsoucaris, G. (2006). “Investigation of white pigments used as make-up during the Greco-Roman period,” Appl. Phys. A 83(4), 551556.Google Scholar
Zilhão, J., Angelucci, D., Badal-García, E., Daniel, F., Dayet, L., Douka, K., Higham, T. F. G., Martínez-Sánchez, M. J., Montes-Bernárdez, R., Murcia-Mascarós, S., and Zapata, J. (2010). “Symbolic use of marine shells and mineral pigments by Iberian Neandertals,” PNAS 107(3), 10231028.Google Scholar
Zubkova., N. V., Pekov, I. V., Ksenofontov, D. A., Yapaskurt, V. O., Pushcharovsky, D. Yu., and Sidorov, E. G. (2018). “Arcanite from fumarole exhalations of the Tolbachik Volcano (Kamchatka, Russia) and its crystal structure,” Dokl. Earth Sci. Pleiades Publishing Ltd. 479(1), 339341.Google Scholar
Zupanov, I. G., and Barreto Xavier, A. (2014). “Quest for permanence in the tropics: Portuguese bioprospecting in Asia (16th–18th centuries),” J. Econ. Soc. History Orient 57, 511548.Google Scholar