Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T10:05:12.519Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for two new N-substituted 3,4-dihydrospiro-2(1H) quinolines

Published online by Cambridge University Press:  10 January 2013

J. A. Henao*
Affiliation:
Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Apdo Aéreo 678, Bucaramanga, Colombia
A. Palma
Affiliation:
Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Apdo Aéreo 678, Bucaramanga, Colombia
V. V. Kouznetsov
Affiliation:
Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Apdo Aéreo 678, Bucaramanga, Colombia
J. M. Delgado
Affiliation:
Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Apdo 40, La Hechicera, Mérida 5251, Venezuela
*
a)To whom all correspondence should be addressed.

Abstract

The X-ray powder diffraction patterns for two N-substituted tetrahydroquinolines are reported. N-(α-Chloroacetyl)-6-methoxy-3,4-dihydro-4-methylspiro[cyclohexane-1,2(1H)quinoline], C18H24ClNO2, and N-(α-chloroacetyl)-6-chloro-3,4-dihydro-4-methylspiro[cyclohexane-1,2(1H)-quinoline], C17H21Cl2NO are monoclinic, with refined unit cell parameters a=1.4471(3), b=0.9600(4), c=1.1948(3) nm, β=93.21(2)°, V=1.6573(6) nm3, Z=4, Dx=1.29 gcm−3, and a=1.4487(3), b=0.9878(2), c=1.1390(2) nm, β=91.66(2)°, V=1.6294(4) nm3, Z=4, and Dx=1.32 gcm−3, respectively, with space group P21/n (No. 14).

Key words: powder diffraction data, spirotetrahydroquinolines.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, P. E., and Berezin, G. H. (1980). “Antihypertensive polyfluorohydroxyisopropil bicyclic and tricyclic carbostyrils,” U. S. Patent 4,218,448.Google Scholar
Bass, R. J., Koch, R. S., Richards, H. C., and Thorpe, J. E. (1975). “Control of plant diseases employing certain pyrrole compounds,” U. S. Patent 3,917,838.Google Scholar
Bass, R. J., Koch, R. S., Richards, H. C., and Thorpe, J. E. (1981). “Tricyclic amides: A new class of systemic fungicides active against rice blast disease,” J. Agric. Food Chem. 29, 576.CrossRefGoogle Scholar
Boultif, A., and Louer, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Gilbert, B. (1965). The Alkaloids Chemistry and Physiology, Vol. 8, edited by R. H. F. Manske (Academic, London), p. 361.Google Scholar
Hill, M. L., and Raphael, R. A. (1986). “Total synthesis of the antiviral (±) virantmycin,” Tetrahedron Lett. 27, 1293.CrossRefGoogle Scholar
Inubushi, Y., and Ibuka, T. (1977). “Studies on some dendrobium alkaloids from the chinese drug 〈Shi-Hu〉,” Heterocycles 8, 633.CrossRefGoogle Scholar
Jones, G. (1977). Heterocycles Compounds (Wiley, New York), Part I, pp. 93–318.Google Scholar
Kametani, T., Takeda, H., Suzuki, H., Kasai, Y., and Honda, T. (1986). “Applications of the Lewis acid catalyzed [4+2] cycloaddition reaction to synthesis of natural quinoline alkaloids,” Heterocycles 24, 3385.CrossRefGoogle Scholar
Kuznetsov, V. V., Aliev, A. E., Palma, A. R., Varlamov, A. V., and Prostakov, N. S. (1991). “Synthesis, chemical transformation and structure of 1,2,3,4-tetrahydrospiro[quinoline-2-cycloalkanes],” Khim. Geterotsikl. Soed 7, 947C. A., 1992, 116:106.057.Google Scholar
Kuznetsov, V. V., Palma, A. R., Aliev, A. E., Prostakov, N. S., Varlamov, A. V. (1993). “Synthesis of p-alkyl(acyl)-1,2,3,4-tetrahydro-4-methyl spiro[quinoline-2-cyclohexanes] and their transformations,” Khim. Geterotsikl. Soed 6,789.C. A., 1994, 120:191.496.Google Scholar
McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., and Wong-Ng, W. (1986). “Methods for Producing Standard X-ray Diffraction Powder Patterns,” Powder Diffr. 1, 4043.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS*AIDS80: A fortran program for crystallographic data evaluation,” National Bureau of Standards (USA), Tech. Note 1141. (NBS*AIDS83 is a development of NBS*AIDS80).Google Scholar
Paris, D., Cottin, M., Demonchaux, P., Augert, G., Dupassieux, P., Lenoir, P., Peck, M. J., and Jasserand, D. (1995). “Synthesis, structure-activity relationships, and pharmacological evaluation of pyrrolo[3,2,1-ij]quinoline derivatives: Potent histamine and platelet activating factor antagonism and 5-lipoxygenase inhibitory properties. Potential therapeutic application in asthma,” J. Med. Chem. 38, 669.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “F(N): A criterion for Rating Powder diffraction Patterns and Evaluating the Reliability of Powder Pattern Indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Yates, F. S. (1984). Comprehensive Heterocyclic Chemistry, Vol. 2, edited by A. R. Katritzky and C. W. Rees (Pergamon, New York), p. 511.Google Scholar