Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T09:30:02.905Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for the second and third polymorphs of 1-methylhydantoin

Published online by Cambridge University Press:  10 May 2022

Gerzon E. Delgado*
Affiliation:
Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Campus Coloso, Antofagasta 240000, Chile
Cecilia Chacón
Affiliation:
Conacyt - Instituto Mexicano del Petróleo, Centro de Tecnologías para Exploración y Producción, Boca del Rio, Veracruz 94286, Mexico
Gustavo Marroquin
Affiliation:
Instituto Mexicano del Petróleo, Ciudad de México 07730, Mexico
Jonathan Cisterna
Affiliation:
Departamento de Química, Facultad de Ciencias, Universidad de Católica del Norte, Antofagasta, Chile
Iván Brito
Affiliation:
Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Campus Coloso, Antofagasta 240000, Chile
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

X-ray powder diffraction data for the two new polymorphs of 1-methylhydantoin, C4H6N2O2, are reported. The polymorph II (MH-II) crystallizes in the orthorhombic system with space group Pna21 [a = 19.0323(7) Å, b = 3.91269(8) Å, c = 6.8311(7) Å, Z′ = 1, Z = 4, unit cell volume V = 508.70(3) Å3. Polymorph III (MH-III) crystallizes in the orthorhombic system with space group P212121 [a = a = 7.82427(5), b = 9.8230(5), c = 20.2951(4), Z′ = 3, Z = 12, unit cell volume V = 1563.5(1) Å3]. All measured lines, in each case, were indexed and are consistent with the space group.

Type
Data Report
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avendaño López, C., and González Trigo, G. (1985). “The chemistry of hydantoins,” Adv. Heterocycl. Chem. 38, 177228.CrossRefGoogle Scholar
Baune, B. T., and Renger, L. (2014). “Pharmacological and non-pharmacological interventions to improve cognitive dysfunction and functional ability in clinical depression - a systematic review,” Psychiat. Res. 219, 2550.CrossRefGoogle ScholarPubMed
Bernstein, J. (2002). Polymorphism in Molecular Crystal (Oxford University Press, New York, USA).Google Scholar
Boultif, A., and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Cruz-Cabeza, A. J., and Bernstein, J. (2014). “Conformational polymorphism,” Chem. Rev. 114, 21702191.CrossRefGoogle ScholarPubMed
Cruz-Cabeza, A. J., Reutzel-Edens, S. M., and Bernstein, J. (2015). “Facts and fictions about polymorphism,” Chem. Soc. Rev. 44, 86198635.CrossRefGoogle ScholarPubMed
Delgado, G. E., Mora, A. J., Contreras, J. E., and Chacón, C. (2015). “X-ray powder diffraction data for 1-methylhydantoin, an antiasthmatic and antidepressive hydantoin compound,” Powder Diffr. 30, 178181.CrossRefGoogle Scholar
Delgado, G. E., Mora, A. J., Seijas, L. E., Almeida, R., Chacón, C., Azotla-Cruz, L., Cisterna, J., Cárdenas, A., and Brito, I. (2020). “N-acetyl-5-isopropyl-2-tioxoimidazolidin-4-one; synthesis, spectroscopic characterization, crystal structure, DFT calculations, hirshfeld surface analysis and energy framework study,” J. Mol. Struct. 1219, 128630.CrossRefGoogle Scholar
Delgado, G. E., Mora, A. J., Seijas, L. E., Rincón, L., Marroquin, G., Cisterna, J., Cárdenas, A., and Brito, I. (2021). “Combined DFT calculation, Hirshfeld surface analysis and energy framework study of non-covalent interactions in the crystal structure of (Z)-5-ethylidene-2-thiohydantoin determined by powder X-ray diffraction,” J. Mol. Struct. 1236, 130361.CrossRefGoogle Scholar
Delgado, G. E., Mora, A. J., Narea, P., Chacón, C., Marroquin, G., Hernández, B., Cisterna, J., and Brito, I. (2022). “Synthesis, crystal structure, hydrogen bond patterns and Hirshfeld surface analysis of (S)-5-(4-hydroxybenzyl)-imidazolidine-2,4-dione,” J. Mol. Struct. 1250, 131757.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Gates-Rector, S., and Blanton, T. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diffr. 34, 352360.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Han, D., Dong, X. L., and Qiu, Z. D. (2014). “Antiasthmatic effect of 1-methylhydantoin on rat asthma model and its mechanism,” J. Jilin Univ., Med. Ed. 40, 543548.Google Scholar
Hernández, B., Narea, P., Cisterna, J., Maxwell, L., Cárdenas, A., Brito, I., and Delgado, G. E. (2021). “Synthesis, spectroscopy and crystal structure characterization, Hirshfeld surface analysis and energy framework calculations of 1-acetyl-5-(2-(methylthio)ethyl)-2-thioxoimidazolidin-4-one,” J. Mol. Struct. 1245, 131070.CrossRefGoogle Scholar
Liu, B., Chen, A., Lan, J., Ren, L., Wei, Y., and Lina, L. (2019). “Protective mechanism of 1-methylhydantoin against lung injury induced by paraquat poisoning,” PLoS One 14, e0222521.CrossRefGoogle ScholarPubMed
Meusel, M., and Gütschow, M. (2004). “Recent developments in hydantoin chemistry. A review,” Org. Prep. Proced. Int. 36, 391443.CrossRefGoogle Scholar
Nogueira, B. A., Ildiz, G. O., Canotilho, J., Eusébio, M. E. S., and Fausto, R. (2014). “Molecular structure, infrared spectra, photochemistry, and thermal properties of 1-methylhydantoin,” J. Phys. Chem. A 118, 59946008.CrossRefGoogle ScholarPubMed
Nogueira, B. A., Ildiz, G. O., Henriques, M. S. C., Paixão, J. A., and Fausto, R. (2017). “Structural and spectroscopic characterization of the second polymorph of 1-methylhydantoin,” J. Mol. Struct. 1148, 111118.CrossRefGoogle Scholar
Nogueira, B. A., Milani, A., Ildiz, G. O., Paixão, J. A., Castiglioni, C., and Fausto, R. (2020). “Polymorphism in 1-methylhydantoin: investigation by periodic DFT calculations and characterization of the third polymorph,” CrystEngComm 22, 63476359.CrossRefGoogle Scholar
Park, K., Evans, J. M. B., and Myerson, A. S. (2003). “Determination of solubility of polymorphs using differential scanning calorimetry,” Crystal. Growth Des. 3, 991995.CrossRefGoogle Scholar
Puszynska-Tuszkanow, M., Daszkiewicz, M., Maciejewska, G., Staszak, Z., Wietrzyk, J., Filip, B., and Cieslak-Golonka, M. (2011). “HSAB principle and nickel(II) ion reactivity towards 1-methyhydantoin,” Polyhedron. 30, 20162025.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (2021). Fullprof, Version 7.40 (LLB, CEA-CNRS, France).Google Scholar
Roisnel, T., and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a windows tool for powder diffraction patterns analysis,” Mater. Sci. Forum 378–381, 118123.CrossRefGoogle Scholar
Seijas, L. E., Mora, A. J., Delgado, G. E., Brunelli, M., and Fitch, A. N. (2010). “Study of the conversion of N-carbamoyl-L-proline to hydantoin-L-proline using powder synchrotron X-ray diffraction,” Powder Diffr. 25, 342348.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of debye-scherrer synchrotron X-ray data from Al2O3,” J. Appl. Cryst. 20, 7983.CrossRefGoogle Scholar
Wang, S., Xu, Y., Wang, Y., Yang, H., Lv, Z., Jin, X., and Wang, Y. (2017). “Simultaneous determination of six active components in oviductus ranae via quantitative analysis of multicomponents by single marker,” J. Anal. Methods Chem. 2017, 9194847.CrossRefGoogle ScholarPubMed
Xu, Y., Wang, F., Guo, H., Wang, S., Ni, S., Zhou, Y., Wang, Z., Bao, H., and Wang, Y. (2019). “Antitussive and anti-inflammatory dual-active agents developed from natural product lead compound 1-methylhydantoin,” Molecules 24, 2355.CrossRefGoogle ScholarPubMed
Yang, B., Liu, D., Li, C. Z., Liu, F. Y., Peng, Y. M., and Jiang, Y. S. (2007). “1-methylhydantoin cytotoxicity on renal proximal tubular cells in vitro,” Ren. Fail. 29, 10251029.CrossRefGoogle ScholarPubMed
You, J. S., Zhang, R. R., Wang, C. G., Shi, J. L., Guo, J. Y., Shi, S. N., Hou, W. H., and Liu, Y. (2013). “Effects of 1-methylhydantoin on behavior changes in depressive rats and its possible mechanisms,” Chin. Pharmacol. Bull. 29, 11041108.Google Scholar