Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T19:10:32.987Z Has data issue: false hasContentIssue false

X-ray diffraction peak-broadening analysis of (La-M)2CuO4 high-Tc superconductors

Published online by Cambridge University Press:  10 January 2013

Davor Balzar
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303, U.S.A.
Hassel Ledbetter
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303, U.S.A.
Alexana Roshko
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303, U.S.A.

Abstract

An X-ray diffraction peak-broadening analysis of four oxides is described: La2CuO4 and La1.85M0.15CuO4 (M = Ca,Ba,Sr) high-Tc superconductors. The diffraction line profiles were fitted with a convolution of specimen and instrumental functions, and the specimen peakbroadening angular dependence was analyzed with the Warren-Averbach method. It was found that microstrains and incoherently diffracting domains are highly anisotropic. In the superconductors, stacking-fault probability increases with increasing Tc; microstrain decreases. In La2CuO4, different broadening of (h00) and (0k0) reflections is not caused by stacking faults; it might arise from lower crystallographic symmetry.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., and Evans, T. (1973). NTIS Document No. PB-216188 U. S. Department of Commerce, (Springfield, VA).Google Scholar
Axe, J. D., Moudden, A. H., Hohlwein, D., Cox, D. E., Mohanty, K. M., Moodenbaugh, A. R., and Xu, Y. (1989). Phys. Rev. Lett. 62, 2751.CrossRefGoogle Scholar
Balzar, D. (1992). J. Appl. Cryst. 25, 559.CrossRefGoogle Scholar
Balzar, D., and Ledbetter, H. (1992). J. Mater. Sci. Lett. 11, 1419.CrossRefGoogle Scholar
Bednorz, J. G. and Müller, K. A. (1986). Z. Phys. B 64, 189.CrossRefGoogle Scholar
Bianconi, A., Budnick, J., Flank, A. M., Fontaine, A., Lagarde, P., Marcelli, A., Tolentino, H., Chamberland, B., Michel, C., Raveau, B., and Demazeau, G. (1988). Phys. Lett A 127, 285.CrossRefGoogle Scholar
Cohen, J. B., and Wagner, C. N. J. (1962). J. Appl. Phys. 33, 207.Google Scholar
Cox, D. E., Moss, S. C., Meng, R. L., Hor, P. H., and Chu, C. W. (1988). J. Mater. Res. 3, 1327.CrossRefGoogle Scholar
Crist, B., and Cohen, J. B. (1979). J. Polym. Sci. 17, 1001.Google Scholar
Day, P., Rosseinsky, M., Prassides, K., David, W. I. F., Moze, O., and Soper, A. (1987). J. Phys. C 20, L429.Google Scholar
Dhard, C. P., and Singh, P. (1988). Proceedings of the International Symposium on High-Temperature Superconductors, Jaipur, India (Oxford & IBH, New Delhi) pp. 271.Google Scholar
Enzo, S., Fagherazzi, G., Benedetti, A., and Polizzi, S. (1988). J. Appl. Cryst. 21, 536.CrossRefGoogle Scholar
Fueki, K., Kitazawa, K., Kishio, K., Hasegawa, T., Uchida, S., Takagi, H., and Tanaka, S. (1987). Chemistry of High-Temperature Superconductors, edited by Nelson, D. L., Whittingham, M. S., and George, T. F. (American Chemical Society, Washington, DC), pp. 3848.CrossRefGoogle Scholar
Fujita, T., and Maeno, Y. (1988). Jpn. J. Appl. Phys. Sr. 1 (Superconducting Materials), 34.Google Scholar
Fujita, T., Aoki, Y., Maeno, Y., Sakurai, J., Fukuba, H., and Fujii, H. (1987). J. Appl. Phys. 26, L368.CrossRefGoogle Scholar
Gai, P. L., and McCarron, E. M. (1990). Science 247, 553.CrossRefGoogle Scholar
Guinea, F. (1988). Europhys. Lett. 7, 549.CrossRefGoogle Scholar
Guinier, A. (1963). X-ray Diffraction, (Freeman, San Francisco), p. 139.Google Scholar
Hidaka, Y., and Murakami, T. (1989). Phase Trans. 15, 241.CrossRefGoogle Scholar
Huang, T. C., and Parrish, W. (1975). Appl. Phys. Lett. 27, 123.CrossRefGoogle Scholar
Johnson, S., Gusman, M., Rowcliffe, D., Geballe, T., and Sun, J. (1987). Adv. Ceram. Mater. 2, 337.CrossRefGoogle Scholar
Kamiyama, T., Izumi, I., Asano, H., Takagi, H., Uchida, S., Tokura, Y., Takayama-Muromachi, E., Matsuda, M., Yamada, K., Endoh, Y., and Hidaka, Y. (1990). Physica C 172, 120.CrossRefGoogle Scholar
Kapitulnik, A. (1988). Physica C 153–155, 520.CrossRefGoogle Scholar
Kishio, K., Kitazawa, K., Kaube, S., Yasuda, I., Sugii, N., Takagi, H., Uchida, S., Fueki, K., and Tanaka, S. (1987). Chem. Lett. 429.Google Scholar
Lang, M., Spille, H., Steglich, F., Hidaka, Y., Murakami, T., and Endoh, Y. (1989). Physica C 162–164, 1037.CrossRefGoogle Scholar
Larbalestier, D. (1991). Phys. Today 44, 74.CrossRefGoogle Scholar
Ledbetter, H., Kim, S., and Roshko, A. (1992). Z. Phys. B 89, 275.CrossRefGoogle Scholar
Lewandowski, J. T., Beyerlein, R. A., Longo, J. M., and McCauley, R. A. (1986). J. Am. Ceram. Soc. 69, 699.CrossRefGoogle Scholar
Millis, A. J., and Rabe, K. M. (1988). Phys. Rev. B 38, 8908.CrossRefGoogle Scholar
Muradyan, L. A., Molchanov, V. N., Tamazyan, R. A., and Simonov, V. I. (1989). Physica C 162–164, 536.CrossRefGoogle Scholar
Roshko, A., and Chiang, Y.-M. (1989). J. Appl. Phys. 66, 3710.CrossRefGoogle Scholar
Rothman, R. L., and Cohen, J. B. (1971). J. Appl. Phys. 42, 971.CrossRefGoogle Scholar
Shannon, R. D., and Prewitt, C. T. (1969). Acta Cryst. B 25, 925.CrossRefGoogle Scholar
Shi, D. (1991). MRS Bull. 16, 37.CrossRefGoogle Scholar
Sleight, A. S. (1991). Phys. Today 44, 24.CrossRefGoogle Scholar
Stokes, A. R. (1948). Proc. Phys. Soc. London 61, 382.CrossRefGoogle Scholar
Suzuki, T., and Fujita, T. (1989). Physica C 159, 111.CrossRefGoogle Scholar
Torrance, J. B., Bezinge, A., Nazzal, A. I., Huang, T. C., Parkin, S. P., Keane, D. T., LaPlaca, S. J., Horn, P. M., and Held, G. A. (1989). Phys. Rev. B 40, 8872.CrossRefGoogle Scholar
Warren, B. E. (1969). X-ray Diffraction (Addison-Wesley, Reading, MA), pp. 251314.Google Scholar
Warren, B. E., and Averbach, B. L. (1952). J. Appl. Phys. 23, 497.CrossRefGoogle Scholar