Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T10:48:50.808Z Has data issue: false hasContentIssue false

X-ray diffraction analyses of 3D MgO-based replicas of diatom microshells synthesized by a low-temperature gas/solid displacement reaction

Published online by Cambridge University Press:  01 March 2012

M. S. Haluska
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
I. C. Dragomir
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
K. H. Sandhage
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
R. L. Snyder
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245

Abstract

The nanostructural features of the gas-phase displacement reaction 2Mg(g)+SiO2→2MgO(s)+{Si}, where SiO2 is in the form of diatom shells were studied via X-ray diffraction and Fourier methods. Diatomaceous powder heated to 700 °C in a sealed graphite cell in the presence of Mg vapor formed MgO via a displacement reaction. Warren-Averbach analysis performed on samples reacted for different times showed an initial sharp MgO grain size distribution which broadened with time. New MgO crystallization was shown to occur until about 60 min, whereafter only MgO grain growth occurred. Median MgO crystallite size increased from 7.5 to 24.9 nm during this period, whereas microstrain decreased dramatically past 60 min annealing time.

Type
Invited Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauerlein, E. (2003). “Biomineralization of Unicellular Organisms: An Unusual Membrane Biochemistry for the Production of Inorganic Nano- and Microstructures,” Angew. Chem., Int. Ed.ACIEF5 42, 614641.CrossRefGoogle ScholarPubMed
Cai, Y. and Sandhage, K. H. (2005). “Zn2SiO4-coated Microparticles with Biologically-Controlled 3-D Shapes,” Phys. Status Solidi APSSABA 202, R105–R107.CrossRefGoogle Scholar
Cai, Y., Allan, S. M., Zalar, F. M., and Sandhage, K. H. (2005). “Three-Dimensional Magnesia-Based Nanocrystal Assemblies via Low-Temperature Magnesiothermic Reaction of Diatom Microshells,” J. Am. Ceram. Soc.JACTAW 88, 20052010.CrossRefGoogle Scholar
Choudary, B. M., Kantam, M. L., Ranganath, K. V. S., Mahendar, K., and Sreedhar, B. (2004). “Bifunctional Nanocrystalline MgO for Chiral Epoxy Ketones via Claisen-Schmidt Condensation-Asymmetric Epoxidation Reactions,” J. Am. Ceram. Soc.JACTAW 126, 33963397.Google ScholarPubMed
Gaddis, C. S. and Sandhage, K. H. (2004). “Freestanding Microscale 3-D Polymeric Structures with Biologically-Derived Shapes and Nanoscale Features,” J. Mater. Res.JMREEE 19, 25412545.CrossRefGoogle Scholar
Gu, F., Wang, S. F., Lu, M. K., Zou, W. G., Zhou, G. J., Xu, D., and Yuan, D. R. (2004). “Combustion Synthesis and Luminescence Properties of Dy+3-Doped MgO Nanocrystals,” J. Cryst. GrowthJCRGAE 260, 507510.CrossRefGoogle Scholar
Haluska, M. S., Misture, S. T., Snyder, R. L., and Sandhage, K. H. (2005). “A Closed, Heated Reaction Chamber Design for Dynamic High-Temperature X-ray Diffraction Analyses of Gas/Solid Displacement Reactions,” Rev. Sci. Instrum. RSINAK 0034-6748 (submitted).Google Scholar
Hildebrand, M. and Wetherbee, R. (2003). “Components and Control of Silicification in Diatoms,” in Progress in Molecular and Subcellular Biology (Springer-Verlag, Berlin), pp. 1157.Google Scholar
Hobson, S. T., Braue, E. H. Jr., Lehnert, E. K., Klabunde, K. J., Koper, O. P., and Decker, S. (2002). “Active Topical Skin Protectants Using Reactive Nanoparticles,” U.S. Patent No. 6,403,653.Google Scholar
ICDD (1984). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073-3272.Google Scholar
ICDD (1988). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073-3272.Google Scholar
ICDD (1990). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073-3272.Google Scholar
ICDD (1993). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073-3272.Google Scholar
Kizuka, T., Ichinose, H. and Ishida, Y. (1994). “Structure and Mechanical Properties of Nanocrystalline Ag∕MgO Composites,” J. Mater. Sci.JMTSAS10.1007/BF00356652 29, 31073112.CrossRefGoogle Scholar
Koper, O. B., Klabunde, J. S., Marchin, G. L., Klabunde, K. J., Stoimenov, P., and Bohra, L. (2002). “Nanoscale Powders and Formulations with Biocidal Activity Toward Spores and Vegetative Cells of Bacillus Species, Viruses, and Toxins,” Curr. Microbiol.CUMIDD 44, 4955.CrossRefGoogle ScholarPubMed
Krill, C. E. and Birringer, R. (1998). “Estimating Grain-Size Distributions in Nanocrystalline Materials from X-ray Diffraction Profile Analysis,” Philos. Mag. APMAADG10.1080/014186198254281 77, 621640.CrossRefGoogle Scholar
Langford, J. I., Louër, D., and Scardi, P. (2000). “Effect of a Crystallite Size Distribution on X-ray Diffraction Line Profiles and Whole-Powder-Pattern Fitting,” J. Appl. Crystallogr.JACGAR10.1107/S002188980000460X 33, 964974.CrossRefGoogle Scholar
Larson, A. C. and Dreele, R. B. V. (1994). “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR 86-748.Google Scholar
Louër, D. and Audebrand, N. (2002). “Microstructure Analysis of Nanocrystalline Powders by X-ray Diffraction,” Acta Phys. Pol. AATPLB6 102, 4556.CrossRefGoogle Scholar
Lowenstam, H. A. and Weiner, S. (1983). “Mineralization and the Evolution of Biomineralization,” in Biomineralization and Biological Metal Accumulation (D. Reidel Publishing Co., Hingham, MA), pp. 191203.CrossRefGoogle Scholar
Mann, S. and Ozin, G. A. (1996). “Synthesis of Inorganic Materials with Complex Form,” Nature (London)NATUAS10.1038/382313a0 382, 313318.CrossRefGoogle Scholar
Martin-Jezequel, V., Hildbrand, M., and Brzezinski, M. A. (2000). “Silicon Metabolism in Diatoms: Implications for Growth,” J. Phycol. 36, 821840.CrossRefGoogle Scholar
Nakayama, T., Kim, B.-S., Kondo, H., Choa, Y.-H., Sekine, T., Nagashima, M., Kusunose, T., Hayashi, Y., and Niihara, K. (2004). “Fabrication of MgO-based Nanocomposites with Multifunctionality,” J. Eur. Ceram. Soc.JECSER 24, 259264.CrossRefGoogle Scholar
Parkinson, J. and Gordon, R. (1999). “Beyond Micromachining: The Potential of Diatoms,” Trends Biotechnol.TRBIDM 17, 190196.CrossRefGoogle ScholarPubMed
Rabani, E., Reichman, D. R., Geissler, P. L., and Brus, L. E. (2003). “Drying-Mediated Self-Assembly of Nanoparticles,” Nature (London)NATUAS10.1038/nature02087 426, 271274.CrossRefGoogle ScholarPubMed
Round, F. E., Crawford, R. M., and Mann, D. G. (1990). The Diatoms: Biology & Morphology of the Genera (Cambridge University Press, Cambridge, England).Google Scholar
Sandhage, K. H., Dickerson, M. B., Huseman, P. M., Zalar, F. M., Rondon, M. R., and Sandhage, E. C. (2002a). “A Novel Hybrid Route to Chemically-Tailored, Three-Dimensional Oxide Nanostructures: The BaSIC (Bioclastic and Shape-Preserving Inorganic Conversion) Process,” Ceram. Eng. Sci. Proc.CESPDK 23, 653664.CrossRefGoogle Scholar
Sandhage, K. H., Dickerson, M. B., Huseman, P. M., Caranna, M. A., Clifton, J. D., Bull, T. A., Heibel, T. J., Overton, W. R., and Schoenwaelder, M. E. A. (2002b). “Novel, Bioclastic Route to Self-Assembled, 3-D, Chemically Tailored Meso/ Nanostructures: Shape-Preserving Reactive Conversion of Biosilica (Diatom) Microshells,” Adv. Mater. (Weinheim, Ger.)ADVMEW 14, 429433.3.0.CO;2-C>CrossRefGoogle Scholar
Sandhage, K. H., Snyder, R. L., Ahmad, G., Allan, S. M., Cai, Y., Dickerson, M. B., Gaddis, C. S., Haluska, M. S., Shian, S., Weatherspoon, M. R., Rapp, R. A., Unocic, R. R., Zalar, F. M., Zhang, Y., Hildebrand, M., and Palenik, B. P. (2005). “Merging Biological Self-Assembly with Synthetic Chemical Tailoring: the Potential for 3-D Genetically-Engineered Micro/Nanodevices (3-D GEMS),” Int. J. Appl. Ceram. Technol.IJACCP 2, 317326.CrossRefGoogle Scholar
Stark, J. V., Park, D. G., Lagadic, I., and Klabunde, K. J. (1996). “Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents. Unique Surface Chemistry on Magnesium Oxide as Shown by Enhanced Adsorption of Acid Gases (Sulfur Dioxide and Carbon Dioxide) and Pressure Dependence,” Chem. Mater.CMATEX10.1021/cm950583p 8, 19041912.CrossRefGoogle Scholar
Storhoff, J. J., Mucic, R. C., and Mirkin, C. A. (1997). “Strategies for Organizing Nanoparticles into Aggregate Structures and Functional Materials,” J. Cluster Sci.JCSCEB10.1023/A:1022632007869 8, 179216.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a Graphical User Interface for GSAS,” J. Appl. Crystallogr.JACGAR10.1107/S0021889801002242 34, 210213.CrossRefGoogle Scholar
Unocic, R. R., Zalar, F. M., Sarosi, P. M., Cai, Y., and Sandhage, K. H. (2004). “Anatase Assemblies from Algae: Coupling Biological Self-Assembly of 3-D Nanoparticle Structures with Synthetic Reaction Chemistry,” Chem. Commun. (Cambridge)CHCOFS 7, 796797.CrossRefGoogle Scholar
Warren, B. E. and Averbach, B. L. (1950). “The Effect of Cold-Work Distortion on X-ray Patterns,” J. Appl. Phys.JAPIAU10.1063/1.1699713 21, 595598.CrossRefGoogle Scholar
Warren, B. E. and Averbach, B. L. (1952). “The Separation of Cold-Work Distortion and Particle-Size Broadening in X-ray Patterns,” J. Appl. Phys.JAPIAU 23, 497.CrossRefGoogle Scholar
Weatherspoon, M. R., Allan, S. M., Hunt, E., Cai, Y., and Sandhage, K. H. (2005). “Sol-Gel Synthesis on Self-Replicating Single-Cell Scaffolds: Applying Complex Chemistries to Nature’s 3-D Nanostructured Templates,” Chem. Commun. (Cambridge), CHCOFS651653.CrossRefGoogle ScholarPubMed
Zhao, J., Gaddis, C. S., Cai, Y., and Sandhage, K. H. (2005). “Free-Standing Microscale Structures of Zirconia Nanocrystals with Biologically Replicable 3-D Shapes,” J. Mater. Res.JMREEE 20, 282287.CrossRefGoogle Scholar