Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T10:27:59.617Z Has data issue: false hasContentIssue false

XLENS, a direct methods program based on the modulus sum function: Its application to powder data

Published online by Cambridge University Press:  10 January 2013

Jordi Rius
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, E-08193 Cerdanyola, Catalunya, Spain

Abstract

XLENS is a traditional direct methods program working exclusively in reciprocal space. The distinctive feature of XLENS is the use of the modulus sum function as target function for the phase refinement. Due to its efficiency, robustness, and no need of weighting schemes, this function is specially well suited for treating powder diffraction data. The mathematical basis as well as the significance of the most important control parameters of the program will be described here. To illustrate how XLENS works, three different examples will be shown. Due to its simplicity, the modulus sum function can be easily combined with real-space filtering procedures to produce even more efficient crystal structure solving strategies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assarson, G. (1933).Sveriges Geol. Undersokn Arbosk. 27Ser C 379,22.Google Scholar
Buttler, F. G., and Taylor, H. F. W. (1978).Il cemento 75, 147152.Google Scholar
Cochran, W. (1952).Acta Crystallogr. 5, 6567.CrossRefGoogle Scholar
Cochran, W., and Douglas, A. S. (1957).Proc. R. Soc. London, Ser. A 243, 281285.Google Scholar
David, W. I. F. (1987).J. Appl. Crystallogr. 20, 316318.CrossRefGoogle Scholar
David, W. I. F. (1990).Nature (London) 346, 731734.CrossRefGoogle Scholar
Debaerdemaeker, T., Tate, C., and Woolfson, M. M. (1985).Acta Crystallogr., Sect. A: Found. Crystallogr. 41, 286290.CrossRefGoogle Scholar
Dinnebier, R., Pink, M., Sieler, J., and Stephens, P. (1997).Inorg. Chem. 36, 33983401.CrossRefGoogle Scholar
Estermann, M. A., McCusker, L. B., and Baerlocher, Ch. (1992).J. Appl. Crystallogr. 25, 539543.CrossRefGoogle Scholar
Estermann, M. A., and Gramlich, V. (1993).J. Appl. Crystallogr. 26, 396.CrossRefGoogle Scholar
Germain, G., and Woolfson, M. M. (1968).Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 24, 9196.CrossRefGoogle Scholar
Gies, H., Marler, B., Vortmann, S., Oberhagemann, U., Bayat, P., Krink, K., Rius, J., Wolf, I., and Fyfe, C. (1998).Microporous and Mesoporous Materials 21, 183197(Elsevier, Amsterdam).CrossRefGoogle Scholar
Grosse-Kunstleve, R. W., McCusker, L. B., and Baerlocher, Ch. (1997).J. Appl. Crystallogr. 30, 985995.CrossRefGoogle Scholar
Guirado, F., Galí, S., Chinchón, S., and Rius, J. (1998).Angew. Chem. Int. Ed. Engl. 37, 7275.3.0.CO;2-8>CrossRefGoogle Scholar
Hull, S. E., and Irwin, M. J. (1978).Acta Crystallogr., Sect. A: Found. Crystallogr. 34, 863870.CrossRefGoogle Scholar
Karle, J., and Hauptman, H. (1956).Acta Crystallogr. 9, 635651.CrossRefGoogle Scholar
Louër, D., and Langford, J. I. (1988).J. Appl. Crystallogr. 21, 430437.CrossRefGoogle Scholar
Main, P., Germain, G., and Woolfson, M. M. (1984). MULTAN, a computer program for the solution of crystal structures, University of York, England.Google Scholar
Meden, A., Grosse-Kuustleve, R., Baerlocher, Ch., and McCusker, L. (1997).Zeitschr. f. Krist. 212, 801807.Google Scholar
Pawley, G. S. (1981).J. Appl. Crystallogr. 14, 357361.CrossRefGoogle Scholar
Rius, J. (1993).Acta Crystallogr., Sect. A: Found. Crystallogr. 49, 406409.CrossRefGoogle Scholar
Rius, J., and Miravitlles, C. (1988).J. Appl. Crystallogr. 21, 224227.CrossRefGoogle Scholar
Rius, J., San˜é, J., Miravitlles, C., Amigó, J. M., and Reventós, M. M. (1995a).Acta Crystallogr., Sect. A: Found. Crystallogr. 51, 268270.CrossRefGoogle Scholar
Rius, J., San˜é, J., Miravitlles, C., Gies, H., Marler, B., and Oberhagemann, U. (1995b).Acta Crystallogr., Sect. A: Found. Crystallogr. 51, 840845.CrossRefGoogle Scholar
Rius, J., San˜é, J., Miravitlles, C., Amigó, J. M., Reventós, M. M., and Louër, D. (1996).Anales de Química (International Edition) 92, 223227Google Scholar
Rius, J., Miravitlles, C., Gies, H., and Amigó, J. M. (1999).J. Appl. Crystallogr. 32, 8997.CrossRefGoogle Scholar
San˜é, J. (1997). Doctoral Thesis. Institut Ciencia de Materials de Barcelona, CSIC.Google Scholar
San˜é, J., and Rius, J. (1993). CLUSTER—A cluster building and display package. Institut de Ciència de Materials de Barcelona (CSIC) (Catalunya, Spain).Google Scholar
San˜é, J., Rius, J., Calvet, T., and Cuevas-Diarte, M. A. (1997).Acta Crystallogr., Sect. B: Struct. Sci. 53, 702707.CrossRefGoogle Scholar
Sayre, D. (1952).Acta Crystallogr. 5, 6065.CrossRefGoogle Scholar
Schott-Darie, C., Kessler, H., Soulard, M., Gramlich, V., and Bennazzi, E. (1994). Studies in Surface Science and Catalysis, Vol. 84, edited by Weitkamp, Karge, Pfeifer, and Hölderich (Elsevier, Amsterdam).Google Scholar
Sheldrick, G. M. (1990).Acta Crystallogr., Sect. A: Found. Crystallogr. 46, 467473.CrossRefGoogle Scholar
Sheldrick, G. M. (1993). SHELXL-93. A Fortran-77 program for the refinement of crystal structures from diffraction data, University of Goettingen (Germany).Google Scholar
Vernoslova, E. A., and Lunin, V. Yu. (1993).J. Appl. Crystallogr. 26, 291294.CrossRefGoogle Scholar
Vortmann, S., Rius, J., Siegamnn, S., and Gies, H. (1997). 101, 1292–1297.CrossRefGoogle Scholar
Wessels, T., Baerlocher, Ch., and McCusker, L. B. (1998). Proceedings of EPDIC-6 (Budapest, Hungary), pp. 21.Google Scholar
Yao, Jia-xing (1981).Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 37, 642644.CrossRefGoogle Scholar