Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T02:17:08.441Z Has data issue: false hasContentIssue false

Total pattern analyses for non-crystalline materials

Published online by Cambridge University Press:  27 May 2020

T. G. Fawcett*
Affiliation:
International Centre for Diffraction Data, Newtown Square, Pennsylvania19073, USA
S. Gates-Rector
Affiliation:
International Centre for Diffraction Data, Newtown Square, Pennsylvania19073, USA
A. M. Gindhart
Affiliation:
International Centre for Diffraction Data, Newtown Square, Pennsylvania19073, USA
M. Rost
Affiliation:
International Centre for Diffraction Data, Newtown Square, Pennsylvania19073, USA
S. N. Kabekkodu
Affiliation:
International Centre for Diffraction Data, Newtown Square, Pennsylvania19073, USA
J. R. Blanton
Affiliation:
International Centre for Diffraction Data, Newtown Square, Pennsylvania19073, USA
T. N. Blanton
Affiliation:
International Centre for Diffraction Data, Newtown Square, Pennsylvania19073, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A total pattern analysis suite of programs has been developed and incorporated into the ICDD® PDF-4 database. While the suite of programs is intended for the analysis of any diffraction pattern, particular attention was focused on the analysis of common amorphous, non-crystalline, or partially crystalline materials found in minerals, polymers, and pharmaceuticals. The suite of programs directly interfaces to the ICDD database and libraries of non-crystalline references.

Type
Proceedings Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Faber, J. and Blanton, J. (2008). “Full pattern comparisons of experimental and calculated powder patterns using the integral index method in PDF-4+,” Adv. X-ray Anal. 51, 183189. (These same two authors developed a normalization of the integral index (normalized R-index) that was published in PDF database products starting with Release 2011).Google Scholar
Faber, J., Weth, C. A., and Bridge, J. (2004). “A plug-in program to perform Hanawalt or Fink search-indexing using organics entries in the ICDD PDF-4/organics 2003 database,” Adv. X-ray Anal. 51, 183189.Google Scholar
Faber, J., Crowder, C. E., Blanton, J., Kabekkodu, S. N., Blanton, T. N., Fawcett, T. G., and Gourdon, O. (2014). “New neutron diffraction data capability in the ICDD PDF-4 + 2014 relational database,” Adv. X-ray Anal. 57, 7789.Google Scholar
Faber, J., Kabekkodu, S., Blanton, J., Blanton, T., and Fawcett, T. (2017). “New neutron time-of-flight (TOF) capability in PDF-4+ relational databases: digitized diffraction patterns and I/Ic for quantitative phase analysis,” Powd. Diff. 32(2), 107111.CrossRefGoogle Scholar
Fawcett, T. G., Crowder, C. E., Kabekkodu, S. N., Needham, F., Kaduk, J. A., Blanton, T. N., Petkov, V., Bucher, E., and Shpanchenko, R. (2013). “Reference materials for the study of polymorphism and crystallinity in cellulosics,” Powd. Diff. 28(1), 1831.CrossRefGoogle Scholar
Fawcett, T. G., Kabekkodu, S. N., Zhong, K., Gindhart, A. M., Blanton, J. R., and Blanton, T. N. (2015). Analyzing amorphous and nanocrystalline materials by full pattern analysis. Presented at PPXRD-13, 18–21 May 2015, Bad Herranalb, Germany. Full presentation available for free download at http://www.icdd.com/assets/ppxrd/presentations/13/PPXRD-13-Fawcett.pdf.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Gates-Rector, S., Gindhart, A. M., Blanton, J. R., and Blanton, T. N. (2016). The analysis of noncrystalline materials in pharmaceutical formulations. Presented at PPXRD-14, 6–9 June 2016, Ft. Myers, FL. Full presentation available for free download at http://www.icdd.com/assets/ppxrd/presentations/14/NON-CRYSTALLINE%20MATERIALS-Long.pdf.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the powder diffraction file™,” Powd. Diff. 32(2), 6371.CrossRefGoogle Scholar
Fawcett, T. G., Blanton, J. R., Blanton, T. N., Arias, L. and Suscavage, T. (2018). “Non-destructive evaluation of Roman coin patinas from the 3rd and 4th century,” Powder Diff. 33(2), 8897.CrossRefGoogle Scholar
Fawcett, T. G., Gates-Rector, S., Gindhart, A. M., Rost, M., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2019a). “A practical guide to pharmaceutical analyses using X-ray powder diffraction,” Powd. Diff. 34(2), 164183.CrossRefGoogle Scholar
Fawcett, T. G., Gates-Rector, S., Gindhart, A., Rost, M., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2019b). “Formulation analyses of high volume prescription drugs,” Powd. Diff. 34(2), 130142.CrossRefGoogle Scholar
Fawcett, T. G., Gates-Rector, S., Rost, M., Blanton, T. N., Price, B., Olley, P. A., and Duffy, C. I. (2020).“Analysis of pigments from Sugito door paintings of the Japanese Edo period,” to be published.Google Scholar
Gates, S. D., Blanton, T. N., and Fawcett, T. G. (2014). “A new ‘chain’ of events: polymers in the Powder Diffraction File™ (PDF®),” Powd. Diff. 29(2), 102107.CrossRefGoogle Scholar
Gates-Rector, S. and Blanton, T. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diff. 34(4), 352360.CrossRefGoogle Scholar
Hanson, R. M. (2010). “Jmol – a paradigm shift in crystallographic visualization,” J. Appl. Cryst. 43, 12501260.CrossRefGoogle Scholar
He, B. B. (2018). Two-Dimensional X-ray Diffraction (John Wiley & Sons, Hoboken, NJ), 2nd ed.CrossRefGoogle Scholar
Hubbard, C. R. (2000). ICDD Reinvented. Presented at the ICDD Workshop at EPDIC-7, Barcelona, Spain, May 20, 2000.Google Scholar
International Centre for Diffraction Data (2014). Technical Bulletin, Search and Identify with SIeve/SIeve+ published by the ICDD. Available for free download at http://www.icdd.com//wp-content/uploads/2018/03/SIeve-Technical-Bulletin.pdf.Google Scholar
Kabekkodu, S. N., Faber, J., and Fawcett, T. G. (2002). “New powder diffraction file (PDF-4) in relational database format: advantages and data-mining capabilities,” Acta Cryst. B 58, 333337.CrossRefGoogle ScholarPubMed
Kaduk, J. A. (2019). “Chapter 3.7, Crystallographic databases and powder diffraction,” in International Tables for Crystallography, Volume H, Powder Diffraction, edited by Gilmore, C., Kaduk, J. A., and Schenk, H. (John Wiley & Sons, New York), Wiley IUCr series, pp. 304324.CrossRefGoogle Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of dutasteride (Avodart), C27H20F6N2O2,” Powd. Diff. 29(3), 264279.Google Scholar
Madsen, I., Scarlett, N., Kleeberg, R., and Knorr, K. (2019). “Chapter 3.9, Quantitative phase analysis,” in International Tables for Crystallography, Volume H, Powder Diffraction, edited by Gilmore, C, Kaduk, J. A., and Schenk, H. (John Wiley & Sons, New York), Wiley IUCr series, pp. 344372.CrossRefGoogle Scholar
Petricek, V., Dusek, M., and Palatinus, L. (2014). “Crystallographic computing system JANA2006: general features,” Z. Kristallogr. 229(5), 345352.Google Scholar
Reid, J., Crane, D., Blanton, J., Crowder, C., Kabekkodu, S., and Fawcett, T. (2011). “Tools for electron diffraction pattern simulation for the powder diffraction file,” Microsc. Today 19(1), 3842.CrossRefGoogle Scholar
Scardi, P., Leoni, M., and Faber, J. (2006). “Diffraction line profile from a disperse system: a simple alternative to Voightian profiles,” Powd. Diff. 21(4), 270.CrossRefGoogle Scholar
Shankland, K. (2019). “Chapter 4.1, An overview of currently used structure determination methods for powder diffraction data” in International Tables for Crystallography, Volume H, Powder Diffraction, edited by Gilmore, C., Kaduk, J. A., and Schenk, H. (John Wiley & Sons, New York), Wiley IUCr series, pp. 386394.CrossRefGoogle Scholar
Smith, D. K. (1963). A FORTRAN Program for Calculating X-ray Powder Diffraction Patterns. Lawrence Radiation Laboratory, Livermore, CA, UCRL-7 193.Google Scholar
Smith, D. K., Johnson, G. G., Scheible, A., and Wims, A. et al. (1987). “Quantitative X-ray powder diffraction method using the full diffraction pattern,” Powd. Diff. 2(2), 7377.CrossRefGoogle Scholar
Turley, J. W. (1965). X-ray Diffraction Patterns of Polymers (ICDD, Newtown Square, PA, USA).Google Scholar