Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T14:12:37.048Z Has data issue: false hasContentIssue false

Thin-film morphologies of block copolymers with nanoparticles

Published online by Cambridge University Press:  09 March 2015

Dieter Jehnichen*
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
Doris Pospiech
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
Peter Friedel
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
Guping He
Affiliation:
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
Alessandro Sepe
Affiliation:
Physik Department, Technische Universität München, Fachgebiet Physik weicher Materie James-Franck-Straße 1, D-85748 Garching, Germany
Jianqi Zhang
Affiliation:
Physik Department, Technische Universität München, Fachgebiet Physik weicher Materie James-Franck-Straße 1, D-85748 Garching, Germany
Christine M. Papadakis
Affiliation:
Physik Department, Technische Universität München, Fachgebiet Physik weicher Materie James-Franck-Straße 1, D-85748 Garching, Germany
Rosa Taurino
Affiliation:
University of Modena and Reggio Emilia, Via Universita 4, I-41121 Modena, Italy
Jan Perlich
Affiliation:
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Diblock copolymers (BCPs) show phase separation on mesoscopic length scales and form ordered morphologies in both bulk and thin films, the latter resulting in nanostructured surfaces. Morphologies in thin films are strongly influenced by film parameters, the ratio of film thickness and bulk domain spacing. Laterally structured polymer surfaces may serve as templates for controlled assembly of nanoparticles (NPs). We investigated the BCP of poly(n-pentyl methacrylate) and poly(methyl methacrylate) which show bulk morphologies of stacked lamellae or hexagonally packed cylinders. Thin films were investigated by atomic force microscopy and grazing-incidence small-angle X-ray scattering. For film thicknesses f well below d bulk, standing cylinder morphologies were observed in appropriate molar ratios, while film thicknesses around and larger than d bulk resulted in cylinders arranged parallel to surface. To alter and/or improve the morphology also in presence of different NPs (e.g., silica, gold), solvent vapour annealing (SVA) was applied. The BCP morphology usually remains unchanged but periodicities change depending on type and amount of incorporated NPs. It was found that silica clusters enlarge lateral distances of cylinders, whereas Au NPs reduce it. The effect of SVA is weak. The quality of morphology is slightly improved by SVA and lateral distances remain constant or are slightly reduced.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, J. N. L. and Epps, T. H. III. (2010). “Self-Assembly in Block Copolymer Thin Films,” Materials Today 13, 2433.Google Scholar
Benoit, H. and Hadziioannou, G. (1988). “Scattering theory and properties of block copolymers with various architectures in the homogeneous bulk state,” Macromolecules 21, 14491464.Google Scholar
Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., and Whyman, R. (1994). “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc., Chem. Commun. 7, 801802.Google Scholar
Fasolka, M. J. and Mayes, A. M. (2001). “Block copolymer thin films: physics and applications,” Annu. Rev. Mater. Res. 31, 323355.Google Scholar
Fischer, D., Pospiech, D., Scheler, U., Navarro, R., Messori, M., and Fabbri, P. (2008). “Monitoring of so-gel synthesis of organic-inorganic hybrids by FTIR transmission FTIOR/ATR, NIR and Raman spectroscopy,” Macromol. Symp. 265, 134143.Google Scholar
He, G. (2014). “The Effect of Modified AuNPs on the Morphology and Nanostructure Orientation of PPMA-b-PMMA Block Copolymer Thin Films,” PhD Thesis, Technische Universität Dresden, Germany (http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154391).Google Scholar
Horechyy, A., Nandan, B., Zafeiropoulos, N. E., Jehnichen, D., Göbel, M., Stamm, M., and Pospiech, D. (2014). “Nanoparticle directed domain orientation in thin films of asymmetric block copolymers,” Colloid Polym. Sci. 292, 22492260.Google Scholar
Jehnichen, D., Pospiech, D., Keska, R., Ptacek, S., Janke, A., Funari, S. S., Timmann, A., and Papadakis, C. M. (2008). “Analysis of thin nanostructured block copolymer films by GISAXS and AFM,” J. Nanostruct. Polym. Nanocomp. 4, 119128.Google Scholar
Jehnichen, D., Pospiech, D., Ptacek, S., Eckstein, K., Friedel, P., Janke, A., and Papadakis, C. M. (2009). “Nanophase-separated diblock copolymers: structure investigations on PPMA-b-PMMA using X-ray scattering methods,” Z. Kristallogr. Suppl. 30, 485490.Google Scholar
Jehnichen, D., Pospiech, D., Friedel, P., Korwitz, A., Berndt, A., Janke, A., Näther, F., Papadakis, C. M., Sepe, A., and Perlich, J. (2010). “Structure investigations in thin films of poly(pentyl methacrylate-b-methyl methacrylate)s and their nanocomposites with nanoparticles,” HASYLAB Annual Report, 20101160, PhotonScience@DESY Hamburg (http://photon-science.desy.de/annual_report/files/2010/20101160.pdf).Google Scholar
Jehnichen, D., Friedel, P., Selinger, R., Korwitz, A., Wengenmayr, M., Berndt, A., and Pospiech, D. (2013). “Temperature dependant structural changes in thin films of random semifluorinated PMMA copolymers,” Powder Diffr.(Suppl.) 28, 144160.Google Scholar
Keska, R., Pospiech, D., Eckstein, K., Jehnichen, D., Ptacek, S., Häußler, L., Friedel, P., Janke, A., and Voit, B. (2006). “Study of the phase behavior of poly(pentyl methacrylate-b-methyl methacrylate) diblock copolymers,” J. Nanostruct. Polym. Nanocomp. 2, 4352.Google Scholar
Kim, H.-C., Park, S.-M., and Hinsberg, W. D. (2010). “Block copolymer based nanostructures: materials, processes, and applications to electronics,” Chem. Rev. 110, 146177.Google Scholar
Knoll, A., Horvat, A., Lyakhova, K. S., Krausch, G., Sevink, G. J. A., Zvelindovsky, A. V., and Magerle, R. (2002). “Phase behavior in thin films of cylinder-forming block copolymers,” Phys. Rev. Lett. 89, 03550110355014.Google Scholar
Krausch, G. and Magerle, R. (2002). “Nanostructured thin films via self-assembly of block copolymers,” Adv. Mater. 14, 15791583.Google Scholar
Lazzari, M. and López-Quintela, M. A. (2003). “Block copolymers as a tool for nanomaterial fabrication,” Adv. Mater. 15, 15831594.Google Scholar
Lee, B., Park, I., Yoon, J., Park, S., Kim, J., Kim, K.-W., Chang, T., and Ree, M. (2005). “Structural analysis of block copolymer thin films with grazing incidence small-angle X-ray scattering,” Macromolecules 38, 43114323.Google Scholar
Hamley, I. W. (2009). “Ordering in thin films of block copolymers: fundamentals to potential applications,” Progr. Polym. Sci. 34, 11611210.Google Scholar
Müller-Buschbaum, P. (2003). “Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films,” Anal. Bioanal. Chem. 376, 310.Google Scholar
Müller-Buschbaum, P. (2009). “A basic introduction to grazing incidence small-angle X-Ray scattering,” Lect. Notes Phys. 776, 6189.Google Scholar
Nandan, B., Kuila, B. K., and Stamm, M. (2011). “Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials,” Eur. Polym. J. 47, 584599.Google Scholar
Park, C., Yoon, J., and Thomas, E. L. (2003). “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 67256760.Google Scholar
Pospiech, D., Werner (Ptacek), S., Jehnichen, D., Komber, H., Friedel, P., Reuter, U., Funari, S. S., Perlich, J., and Voit, B. (2012). “Multifunctionalized methacrylate di- and triblock copolymers: synthesis and nanostructure,” J. Nanostruct. Polym. Nanocomp. 8, 5866.Google Scholar
Segalman, R. A. (2005). “Patterning with block copolymer thin films,” Mat. Sci. Eng. R 48, 191226.Google Scholar
Sepe, A., Cernoch, P., Stepanek, P., Hoppe, E. T., and Papadakis, C. M. (2014). “Creation of lateral structures in diblock copolymer thin films during vapor uptake and subsequent drying – effect of film thickness,” Eur. Polym. J. 50, 8796.Google Scholar
Roth, S. V., Döhrmann, R., Dommach, M., Kuhlmann, M., Kröger, I., Gehrke, R., Walter, H., Schroer, C., Lengeler, B., and Müller-Buschbaum, P. (2006). “The small-angle options of the upgraded USAXS beamline BW4 at HASYLAB,” Rev. Sci. Instr. 77, 085106, 17.Google Scholar
Taurino, R. (2008). “Organic-Inorganic Hybrid Materials by Sol-gel Process,” PhD Thesis, University of Perugia, Terni, Italy.Google Scholar
Werner, S., Pospiech, D., Jehnichen, D., Eckstein, K., Komber, H., Friedel, P., Janke, A., Näther, F., Reuter, U., Voit, B., Taurino, R., and Messori, M. (2011). “Synthesis and phase-separation behavior of α,ω-difunctionalized diblock copolymers,” J. Polym. Sci., A: Polym. Chem. 49, 926937.Google Scholar
Yee, C. K., Jordan, R., Ulman, A., White, H., King, A., Rafailovich, M., and Sokolov, J. (1999). “Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride,” Langmuir 15, 34863491.Google Scholar
Yuan, J., Xu, Y., Walther, A., Bolisetty, S., Schumacher, M., Schmalz, H., Ballauf, M., and Müller, A. H. E. (2008). “Water soluble organo-silica hybrid nanowires,” Nat. Mater. 7, 718722.Google Scholar
Zhang, J., Posselt, D., Smilgies, D.-M., Perlich, J., Kyriakos, K., Jaksch, S., and Papadakis, C. M. (2014). “Lamellar diblock copolymer thin films during solvent vapor annealing studied by GISAXS: different behavior of parallel and perpendicular lamellae,” Macromolecules 47, 57115718.Google Scholar