Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T18:53:17.527Z Has data issue: false hasContentIssue false

Synthesis, characterization, and crystal structure of two zinc linear dicarboxylates

Published online by Cambridge University Press:  06 May 2016

Berenice Torruco Baca
Affiliation:
Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. C.P. 04510, México
Luis Felipe del Castillo
Affiliation:
Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. C.P. 04510, México
Paula Vera-Cruz
Affiliation:
Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. C.P. 04510, México
Rubén A. Toscano
Affiliation:
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. C.P. 04510, México
Joelis Rodríguez-Hernández
Affiliation:
Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. C.P. 04510, México Departamento de Materiales Avanzados, Centro de Investigación en Química Aplicada, CIQA, Blvd. Enrique Reyna No. 140, C.P. 25294, Saltillo, Coahuila, México
Jorge Balmaseda*
Affiliation:
Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. C.P. 04510, México
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Two different crystalline structures corresponding to a zinc adipate and a zinc succinate were determined combining: X-ray powder and single-crystal diffraction, infrared spectroscopy, thermal analysis, and true densities experiments. The zinc succinate crystal structure was determined by single-crystal X-ray diffraction. This compound crystallizes in the orthorhombic space-group Cccm with unit-cell parameters a = 4.792(1) Å, b = 21.204(6) Å, c = 6.691(2) Å, V = 679.8(3) Å3, and Z = 8. Zinc adipate crystal structure was refined from the laboratory X-ray powder diffraction data by the Rietveld method. It crystallizes in the monoclinic space group P2/c with unit-cell parameters, a = 16.2037(17)Å, b = 4.7810(2)Å, c = 9.2692(6)Å, β = 90.329(3)°, V = 718.07(9) Å3, and Z = 4. The thermal expansion of it was estimated in 5.40 × 10−5 K−1. This contribution is a step on the way to systematize the regularities in the coordination diversity between linear dicarboxylates and transition metal–inorganic buildings units of metal–organic frameworks.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, N., Ahmad, M. M., and Kotru, P. N. (2015). “Single crystal growth by gel technique and characterization of lithium hydrogen tartrate,” J. Cryst. Growth 412, 7279.Google Scholar
Boultif, A. and Louer, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37(5), 724731.Google Scholar
Bruker (1999). SMART, Software for the CCD Detector System, version 5.625 (Computer Software) (Bruker AXS, Inc., Madison, Wisconsin, USA).Google Scholar
Bruker (2012). APEX2 (Computer Software) (Bruker AXS, Inc., Madison, Wisconsin, USA).Google Scholar
Bruker (2008a). SADABS, Area Detector Scaling and Absorption Correction, version 2008/1 (Computer Software) (Bruker AXS, Inc., Madison, Wisconsin, USA).Google Scholar
Bruker (2008b). SAINT, Software for the CCD Detector System, version 7.34 (Computer Software) (Bruker AXS, Inc., Madison, Wisconsin, USA).Google Scholar
Deacon, G. B. and Phillips, R. J. (1980). “Relationships between the carbon–oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination,” Coord. Chem. Rev. 33(3), 227250.Google Scholar
Horike, S. and Kitagawa, S. (2011). “Design of porous coordination polymers/metal–organic frameworks: past, present and future,” in Metal-Organic Frameworks: Applications from Catalysis to Gas Storage (ed David Farrusseng), Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.Google Scholar
Jiang, M.-h. and Fang, Q. (1999). “Organic and semiorganic nonlinear optical materials,” Adv. Mater. 11(13), 11471151.Google Scholar
Kim, Y. J., Jung, D.-Y., Hong, K.-P., and Demazeau, G. (2001). “Solid solution of transition metal-dicarboxylates with tunable magnetic properties,” Solid State Sci. 3(8), 837846.Google Scholar
Klaus, S., Lehenmeier, M. W., Herdtweck, E., Deglmann, P., Ott, A. K., and Rieger, B. (2011). “Mechanistic insights into heterogeneous zinc dicarboxylates and theoretical considerations for CO2–epoxide copolymerization,” J. Am. Chem. Soc. 133(33), 1315113161.Google Scholar
Livage, C., Egger, C., Nogues, M., and Ferey, G. (1998). “Hybrid open frameworks (MIL-n). Part 5 Synthesis and crystal structure of MIL-9: a new three-dimensional ferrimagnetic cobalt(II) carboxylate with a two-dimensional array of edge-sharing Co octahedra with 12-membered rings,” J. Mater. Chem. 8(12), 27432747.Google Scholar
Randhawa, B. and Gandotra, K. (2006). “A comparative study on the thermal decomposition of some transition metal carboxylates,” J. Therm. Anal. Calorimetry 85(2), 417424.Google Scholar
Rao, C. N. R., Natarajan, S., and Vaidhyanathan, R. (2004). “Metal carboxylates with open architectures,” Angew. Chem. Int. Ed. 43(12), 14661496.Google Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B: Condens. Matter 192(1–2), 5569.Google Scholar
Saines, P. J., Barton, P. T., Jain, P., and Cheetham, A. K. (2012). “Structures and magnetic properties of Mn and Co inorganic–organic frameworks with mixed linear dicarboxylate ligands,” CrystEngComm 14, 27112720.Google Scholar
Saines, P. J., Barton, P. T., Jura, M., Knight, K. S., and Cheetham, A. K. (2014). “Cobalt adipate, Co(C6H8O4): antiferromagnetic structure, unusual thermal expansion and magnetoelastic coupling,” Mater. Horiz. 1, 332337.Google Scholar
Salles, F., Maurin, G., Serre, C., Llewellyn, P. L., Knöfel, C., Choi, H. J., Filinchuk, Y., Oliviero, L., Vimont, A., Long, J. R., and Férey, G. (2010). “Multistep N2 breathing in the metal−organic framework Co(1,4-benzenedipyrazolate),” J. Am. Chem. Soc. 132(39), 1378213788.Google Scholar
Sheldrick, G. M. (2008). “A short history of SHELX,” Acta Crystallogr. A 64(1), 112122.Google Scholar
Sibille, R., Mazet, T., Malaman, B., Wang, Q., Didelot, E., and François, M. (2015). “Site-dependent substitutions in mixed-metal metal–organic frameworks: a case study and guidelines for analogous systems,” Chem. Mater. 27(1), 133140.Google Scholar
Spek, A. (2009). “Structure validation in chemical crystallography,” Acta Crystallogr. D 65(2), 148155.Google Scholar
Werner, P.-E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. 18(5), 367370.Google Scholar
Yang, J. X., Qin, Y.-Y., Cheng, J.-K., Zhang, X., and Yao, Y.-G. (2015). “Construction of a series of Zn(II) compounds with different entangle motifs by varying flexible aliphatic dicarboxylic acids,” Cryst. Growth Des. 15(5), 22232234.CrossRefGoogle Scholar
Supplementary material: File

Baca supplementary material

Baca supplementary material 1

Download Baca supplementary material(File)
File 75.1 KB
Supplementary material: File

Baca supplementary material

Figures S1-S4 and Tables S1-S3

Download Baca supplementary material(File)
File 477.2 KB