Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T13:44:12.807Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction data of 2-morpholino-2-(3,4,5-trimethoxyphenyl)acetonitrile, (C15H20N2O4)

Published online by Cambridge University Press:  23 May 2016

Jose H. Quintana Mendoza
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
J. A. Henao*
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Aurora L. Carreño Otero
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Universidad Industrial de Santander, Parque Tecnológico Guatiguara, Km 2 via refugio, Piedecuesta, Colombia
Vladimir V. Kouznetsov
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Universidad Industrial de Santander, Parque Tecnológico Guatiguara, Km 2 via refugio, Piedecuesta, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The α-aminonitrile, 2-morpholino-2-(3,4,5-trimethoxyphenyl)acetonitrile (C15H20N2O4), was prepared through a silica sulfuric acid-catalyzed Strecker reaction between 3,4,5-trimethoxybenzaldehyde, morpholine, and two different cyanide sources. Molecular characterization was performed by Fourier transform infrared spectroscopy, gas chromatography–mass spectrometry, (1H, 13C – mono and bidimensional) nuclear magnetic resonance; crystallographic characterization was completed by X-ray powder diffraction of polycrystalline samples. The title compounds crystallized in a monoclinic system and unit-cell parameters are reported [a = 13.904(2), b = 5.1696(6), c = 21.628(3) Å, β = 104.31(1)°, unit-cell volume V = 1506.3(3) Å3, Z = 4]. All measured lines were indexed with the P21/a (No. 14) space group.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Loüer, D. (2004). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Chaturvedi, D., Chaturvedi, A. K., Mishra, N., and Mishra, V. (2012). “A novel approach for the synthesis of α-aminonitriles using Mitsunobu's reagent under solvent-free conditions,” Tetrahedron Lett. 53, 53985401.CrossRefGoogle Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for poder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 838838.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGPandhttp://www.ccp14.ac.uk/tutorial/lmgp/ Google Scholar
Mighell, A. D., Hubberd, C. R., and Stalick, J. K. (1981). “NBS* AIDS80: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Technical Note 1141.CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A correction for the α 1 α 2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.CrossRefGoogle Scholar
Royer, L., De, S., and Gibbs, R. A. (2005). “Iodine as a novel and efficient reagent for the synthesis of a-aminonitriles by a three-component condensation of carbonyl compounds, amines, and trimethylsilyl cyanide,” Tetrahedron Lett. 46, 45954597.CrossRefGoogle Scholar
Saviztky, A. and Golay, M. J. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “ F N : A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.CrossRefGoogle Scholar
Surya Prakash, G. K., Mathew, T., Panja, C., Alconcel, S., Vaghoo, H., Do, C., and Olah, G. (2007). “Gallium (III) triflate atalysed efficient Strecker reaction of ketones and their fluorinated analogs,” Proc. Natl. Acad. Sci. USA 104, 37033706.CrossRefGoogle Scholar
Takahashi, E., Fujisawa, H., Yanai, T., and Mukaiyama, T. (2005). “Lewis base-catalyzed Strecker-type reaction between trimethylsilyl cyanide and N-tosylimines in water-containing DMF,” Chem. Lett. 3, 318319.CrossRefGoogle Scholar
Vargas Méndez, L. Y. and Kouznetsov, V. V. (2013) “First girgensohnine analogs prepared through InCl3-catalyzed Strecker reaction and their bioprospection,” Curr. Org. Synth. 10, 969973.CrossRefGoogle Scholar
Supplementary material: File

Quintana Supplementary Material

Zip

Download Quintana Supplementary Material(File)
File 40.5 KB