Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T03:14:35.674Z Has data issue: false hasContentIssue false

Structures of two newly synthesized A0.50SbFe(PO4)3 (A=Mn, Cd) Nasicon phases

Published online by Cambridge University Press:  01 March 2012

Abderrahim Aatiq*
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Rabia Hassine
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
My Rachid Tigha
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Ismael Saadoune
Affiliation:
Laboratoire de Chimie des Matériaux et de l’environnement, Faculté des Sciences et Techniques, B.P. 549, Marrakech, Morocco
*
a)Electronic mail: [email protected]

Abstract

Crystal structures of A0.50SbFe(PO4)3(A=Mn, Cd) phases, obtained by solid state reaction at 920 °C, were determined at room temperature from X-ray powder diffraction (XRD) using the Rietveld method. The structures of the two samples are of the Nasicon-type with the R3 space group. Hexagonal cell parameters for A=Mn and Cd are: a=8.375(1) Å, c=21.597(2) Å and a=8.313(1) Å, c=21.996(2) Å, respectively. From XRD data, it is difficult to unambiguously distinguish between Cd2+ and Sb5+ ions in Cd0.50SbFe(PO4)3 and between Mn2+ and Fe3+ cations in Mn0.50SbFe(PO4)3. Nevertheless the overall set of cation–anion distances within the Nasicon framework clearly shows that the cation distribution can be illustrated by the {[A0.50]3a[◻0.50]3b}M1SbFe(PO4)3 (A=Mn, Cd) crystallographic formula. The divalent A2+ cations and vacancies are ordered within the two positions, 3a and 3b, of the M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, each A(3a)O6(A=Mn, Cd) octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A. (2004). “Synthesis and structural characterization of ASnFe(PO4)3 (A=Na2, Ca, Cd) phosphates with the Nasicon type structure,” Powder Diffr. PODIE2 19, 272279.CrossRefGoogle Scholar
Aatiq, A., and Dhoum, H. (2004). “Structure of AFeTi(PO4)3 (A=Ca, Cd) Nasicon phases from powder X-ray data,” Powder Diffr. PODIE2 19, 157161.CrossRefGoogle Scholar
Aatiq, A., Ménétrier, M, Croguennec, L., Suard, E., and Delmas, C. (2002). “On the structure of Li3Ti2(PO4)3,” J. Mater. Chem. JMACEP 12, 29712978.CrossRefGoogle Scholar
Aatiq, A., Ménétrier, M, El Jazouli, A., and Delmas, C. (2002). “Structural and lithium intercalation studies of Mn(0.5−x)CaxTi2(PO4)3 phases (0⩽x⩽0.50),” Solid State Ionics SSIOD3 150, 391405.CrossRefGoogle Scholar
Brown, I. D., and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 41, 244247.CrossRefGoogle Scholar
Cherkaoui, F., Villeneuve, G., Delmas, C., and Hagenmuller, P. (1986). “Sodium motion in the Nasicon related Na(1+x)Zr (2−x)Lnx(PO4)3 solid solution: An NMR Study,” J. Solid State Chem. JSSCBI 65, 293300.CrossRefGoogle Scholar
Delmas, C., Nadiri, A., and Soubeyroux, J. L. (1988). “The Nasicon-type titanium phosphates ATi 2(PO4)3 (A=Li, Na) as electrode materials,” Solid State Ionics SSIOD3 28–30, 419423.CrossRefGoogle Scholar
Fakrane, H., Aatiq, A., Lamire, M., El Jazouli, A., and Delmas, C. (1998). “Chemical, structural and magnetic studies of Mn0.5Ti2(PO4)3 and its solid solution with NaTi 2(PO4)3,” Ann. Chim. Sci. Mat. 23, 8184.CrossRefGoogle Scholar
Hagman, L., and Kierkegaard, P. (1968). “The crystal structure of NaMe 2IV(PO4)3; Me=Ge, Ti, Zr,” Acta Chem. Scand. ACHSE7 22, 18221932.CrossRefGoogle Scholar
Hong, H. Y-P. (1976). “Crystal structures and crystal chemistry in the system Na(1+x)Zr 2Si xP(3−xO12,” Mater. Res. Bull. MRBUAC 11, 173182.CrossRefGoogle Scholar
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,” J. Solid State Chem. JSSCBI 105, 561566.CrossRefGoogle Scholar
Masquelier, C., Wurn, C., Rodriguez-Carvajal, J., Gaubicher, J., and Nazar, L. F. (2000). “A Powder Neutron Diffraction investigation of the two rhombohedral Nasicon analogues: γ−Na3Fe2(PO4)3 and Li3Fe2(PO4)3,” Chem. Mater. CMATEX 12, 525532.CrossRefGoogle Scholar
Masse, R., Durif, A., Guitel, J. C., and Tordjman, I. (1972). “Structure cristalline du monophosphate lacunaire KTi 2(PO4)3. Monophosphates lacunaires NbGe(PO4)3 et M5+Ti(PO4)3 pour M=Sb, Nb, Ta,” Bull. Soc. Fr. Mineral. Cristallogr. BUFCAE 95, 4755.Google Scholar
Morgan, D., Ceder, G., Saidi, M. Y., Barker, J., Swoyer, J., Huang, H., and Adamson, G. (2003). “Experimental and computational study of the structure and electrochemical properties of monoclinic LixM2(PO4)3,” J. Power Sources JPSODZ 119–121, 755759.CrossRefGoogle Scholar
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., and Goodenoogh, J. B. (1997). “Mapping of transition metal redox energies in phosphates with Nasicon structure by lithium intercalation,” J. Electrochem. Soc. JESOAN 144, 25812586.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France.Google Scholar
Serghini, A., Brochu, R., Olazcuaga, R., and Gravereau, R. (1995). “The monovalent copper tin phosphate CuSn 2(PO4)3,” Mater. Lett. MLETDJ 22, 149153.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 32, 751767.CrossRefGoogle Scholar
Woodcock, D. A., Lightfoot, P., and Smith, R. I. (1999). “Powder neutron studies of three low thermal expansion in the NZP family: K0.5Nb0.5Ti1.5(PO4)3, BaTi 2(PO4)3 and Ca0.25Sr 0.25Zr 2(PO4)3,” J. Mater. Chem. JMACEP 9, 26312636.CrossRefGoogle Scholar
Yin, S. C., Grondey, H., Strobel, P. S., and Nazar, L. F. (2004). “Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3,” Chem. Mater. CMATEX 16, 14561465.CrossRefGoogle Scholar