Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T14:36:19.789Z Has data issue: false hasContentIssue false

Structures and X-ray diffraction patterns of compounds in the Sr–Nd–Cu–O system

Published online by Cambridge University Press:  10 January 2013

Winnie Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Abstract

A comprehensive review of phases found in the Sr–Nd–Cu–O system which contains the high Tc superconductor phase Sr1−xNdxCuO2 has been prepared. This paper summarizes the crystal structures reported in the literature and the X-ray powder diffraction patterns reported in the ICDD Powder Diffraction File (PDF). In order to supplement the PDF with new patterns, calculated X-ray powder diffraction patterns generated from reported structures are provided for five ternary oxides: Sr0.86Nd0.14CuO2, SrNdCuO3.5, Sr6Nd3Cu6O17, Sr2NdCu2O5.66, and Sr1.2Nd1.8Cu2O6.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caignaert, V., Retoux, R., Michel, C., Hervieu, , and Raveau, B. (1990). “Neutron Diffraction Study of the Layered Cuprate Sr2−xNd1+xCu2O6−y,” Physica C 167, 483.CrossRefGoogle Scholar
Caignaert, V., Retoux, R., Michel, C., Hervieu, , and Raveau, B. (1991). “Sr6Nd3Cu6O17: An Intergrowth of the '123“—Phase and Rock Salt-type Structure,” J. Solid State Chem. 91, 41.CrossRefGoogle Scholar
Grasmeder, J. R., and Weller, M. T. (1990). “Structure and Oxygen Stoichiometry in Ln2−xSr1+xCu2O6−y (Ln=La, Nd, Sm) Phases,” J. Solid State Chem. 85, 88.CrossRefGoogle Scholar
Hodorowicz, S. A., Lasocha, A., Lasocha, W., and Eick, H. A. (1988). “The High-Temperature Eu2O3–BaCO3–CuO–Atmospheric Oxygen Phase Diagram: Phase Characterization in the 90 K Superconducting Region,” J. Solid State Chem. 75, 270.CrossRefGoogle Scholar
Hwang, N. M., Roth, R. S., and Rawn, C. J. (1990). “Phase Equilibria in the System SrO–CuO and SrO–1/2Bi2O3,” J. Am. Ceram. Soc. 73 (8), 2531.CrossRefGoogle Scholar
Kilbanow, D., Sujata, K., and Mason, T. O. (1988). “Solid Phase Relations at 950 °C in La–Ba–Cu–O,” J. Amer. Ceram. Soc. 71 (5), C267.Google Scholar
Klockow, C., and Eysel, W. (1988). “JCPDS Grant-in-Aid Report,” International Centre for Diffraction Data, 12 Campus Blvd., Newtown Square, PA 19073-3273, U.S.A.Google Scholar
Labbe, P. H., Gilbert, M. L., Caigneart, V., and Raveau, B. (1990). “Structural Peculiarities of the Layered Cuprates, NdSrCuO3.5 and Nd1.8Sr1.2Cu2O6−δ,” J. Solid State Chem. 91, 362.CrossRefGoogle Scholar
Lopato, L. M., Lugin, L. I., and Shevchenko, A. V. (1973). “Phase Diagram of the Pr2O3–SrO System,” Sov. Progr. Chem. 39 (2), 27.Google Scholar
Matheis, D. P., and Snyder, R. L. (1990). “The Crystal Structures and Powder Diffraction Patterns of the Bismuth and Thallium Ruddlesden–Popper Copper Oxide Semiconductors,” Powder Diffr. 5, 8.CrossRefGoogle Scholar
Oka, K., and Unoki, H. (1989). “Phase Diagram and Crystal Growth of Superconductive (NdCe)2CuO4,” Jpn. J. Appl. Phys. Part 2, 28 (6), L937.CrossRefGoogle Scholar
Pieczulewski, C. N., Kirkpatrick, K. S., and Mason, T. O. (1990). “1000 °C Phase Relations and Superconductivity in the (Nd–Ce–Cu)–O Ternary System,” J. Amer. Ceram. Soc. 73 (7), 2141.CrossRefGoogle Scholar
Reardon, B. J., and Hubbard, C. R. (1992a). “A Review of the XRD Data of the Phases Present in the CaO–SrO–PbO System,” Powder Diffr. 7, 96.CrossRefGoogle Scholar
Reardon, B. J., and Hubbard, C. R. (1992b). “A Review of the XRD Data of the Phases Present in the CaO–SrO–CuO System,” Powder Diffr. 7, 142.CrossRefGoogle Scholar
Roth, R. S., Davis, K. L., and Dennis, J. R. (1987). “Phase Equilibria and Crystal Chemistry in the System Ba–Y–Cu–O,” Adv. Ceram. Mater. 2 (3B), 303.CrossRefGoogle Scholar
Roth, R. S., Rawn, C. J., Beech, F., Whitler, J. D., and Anderson, J. O. (1988). “Phase Equilibria in the System Ba–Y–Cu–CO2 in Air. Superconductor II,” edited by Yan, M. F. (Am. Ceram. Soc., Columbus, OH), pp. 13.Google Scholar
Roth, R. S., Rawn, C. J., Ritter, J. J., and Burton, B. P. (1989). “Phase Equilibria of the System SrO-CaO-CuO,” J. Am. Ceram. Soc. 72 (8), 1545.CrossRefGoogle Scholar
Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F. (1990a). “Phase Equilibria and Crystal Chemistry in Portions of the System SrO–CaO–Bi2O3–CuO. Part II—the System SrO–Bi2O3–CuO,” J. Res. Natl. Inst. Stand. Tech. 95, 291.CrossRefGoogle Scholar
Roth, R. S., Rawn, C. J., and Burton, B. P. (1990b). “Phase Equilibria and Crystal Chemistry in Portions of the System SrO–CaO–Bi2O3–CuO. Part III. Preliminary Phase Diagrams for the Ternary Systems SrO–Bi2O3–CuO, CaO–Bi2O3–CuO and SrO–CaO–Bi2O3. Ceramic Transaction,” 13, 2324;Google Scholar
also Superconductivity and Ceramic Superconductors, edited by Nair, K. M. and Giess, E. A. (American Ceramic Society, Columbus, OH).Google Scholar
Siegrist, T., Zahurak, S. M., Murphy, D. W., and Roth, R. S. (1988). “The Parent Structure of the Layered High Temperature Superconductors,” Nature 334 (21), 231.CrossRefGoogle Scholar
Smith, D. K., Nichols, M. C., and Zolensky, M. E. (1983). A FORTRAN IV Program for Calculating X-ray Powder Diffraction Patterns-Version 10 (The Pennsylvania State University, University Park, PA), 72 pp.Google Scholar
Smith, M. G., Manthiram, A., Zhou, J., Goodenough, J. B., and Markert, J. T. (1991). “Electron-doped superconductivity at 40K in the infinitelayer compound Sr1−yNdyCuO2,” Nature 351 (13), 549.CrossRefGoogle Scholar
Teske, C. L., and Mueller-Buschbaum, H. (1969a). “Uber erdalkali-metall-oxocuprate II. Zur Kenntnis von Sr2CuO3,” Z. Anorg. Allg. Chem. 371, 325.CrossRefGoogle Scholar
Teske, C. L., and Mueller-Buschbaum, H. (1969b). “Uber erdalkali-metall-oxocuprate V. Zur kenntnis von Ca2CuO3 and SrCuO2,” Z. Anorg. Allg. Chem. 379 (3), 234.CrossRefGoogle Scholar
Tresvyatskii, S. G., Pavlikov, V. N., Lopato, L. M., and Lugin, L. I. (1970). “Phase Transformations in the Nd2O3–SrO System,” Inorg. Mater. 6 (1), 33.Google Scholar
Wong-Ng, W. (1992). “The ICDD/PDF Coverage of the High Tc Superconductor and Related Compounds in the A–R–Cu–O Systems (A = Ba, Sr and Ca, and R = Lanthanides and Y),” Powder Diffr. 7, 125.CrossRefGoogle Scholar
Wong-Ng, W., Paretzkin, B., and Fuller, E. R. (1989a). “Crystal Chemistry and Phase Equilibria Studies of the BaO(BaCO3)–R2O3–CuO Systems. IV. Crystal Chemistry and Subsolidus Phase Relationship Studies of the CuO-Rich Region of the Ternary Diagrams, R = Lanthanides,” J. Solid State Chem. 85, 117.CrossRefGoogle Scholar
Wong-Ng, W., Paretzkin, B., and Fuller, E. R. (1989b). “Crystal Chemistry and Phase Equilibria of the BaO–R2O3–CuO Systems,” Adv. X-ray Anal. 33, 453.Google Scholar
Wong-Ng, W., and Paretzkin, B. (1990). “Crystal Chemistry and Phase Equilibria Studies of the BaO(BaCO3)–R2O3–CuO Systems. III: X-Ray Powder Characterization and Diffraction Patterns of the Ba3R3Cu6O14+x, R = Lanthanides,” Powder Diffr. 5, 26.CrossRefGoogle Scholar
Wong-Ng, W., Cook, L. P., Paretzkin, B., Hill, M. D., and Stalick, J. K. (1994). “Crystal Chemistry and Phase Equilibrium Studies of the BaO–½R2O3–CuOx, System in Air. VI. R = Neodymium,” J. Am. Ceram. Soc. 77 (9), 2354.CrossRefGoogle Scholar
Wong-Ng, W., and Paretzkin, B. (1991). “Crystal Chemistry and Phase Equilibrium Studies of the BaO–R2O3–CuO System. II. X-ray Characterization and Standard Patterns of BaR2CuO4, R = Lanthanides,” Powder Diffr. 6, 187.CrossRefGoogle Scholar