Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T08:56:26.690Z Has data issue: false hasContentIssue false

Structure of triplite LiFeSO4F powder synthesized through an ambient two-step solid-state route

Published online by Cambridge University Press:  22 March 2018

F.-F. Ma
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
J.-W. Mao
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
G.-Q. Shao*
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
S.-H. Fan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
C. Zhu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
A.-L. Zhang
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
G.-Z. Xie
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
J.-N. Gu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
J.-L. Yan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The triplite LiFeSO4F displays both the highest potential ever reported for an Fe-based compound, as well as a comparable specific energy with that of popular LiFePO4. The synthesis is still a challenge because the present approaches are connected with long time, special equipments or organic reagents, etc. In this work, the triplite LiFeSO4F powder was synthesized through an ambient two-step solid-state route. The reaction process and phase purity were analyzed, coupled with structure refinement and electrochemical test.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amin, R., Balaya, P., and Maier, J. (2007). “Anisotropy of electronic and ionic transport in LiFePO4 single crystals,” Electrochem. Solid-State Lett. 10, A13A16.CrossRefGoogle Scholar
Ati, M., Walker, W. T., Djellab, K., Armand, M., Recham, N., and Tarascon, J.-M. (2010). “Fluorosulfate positive electrode materials made with polymers as reacting media,” Electrochem. Solid-State Lett. 13, A150A153.CrossRefGoogle Scholar
Ati, M., Melot, B. C., Chotard, J. N., Rousse, G., Reynaud, M., and Tarascon, J. M. (2011). “Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure,” Electrochem. Commun. 13, 12801283.CrossRefGoogle Scholar
Ati, M., Sathiya, M., Boulineau, S., Reynaud, M., Abakumov, A., Rousse, G., Melot, B., Van Tendeloo, G., and Tarascon, J.-M. (2012a). “Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode,” J. Am. Chem. Soc. 134, 1838018387.CrossRefGoogle ScholarPubMed
Ati, M., Sougrati, M. T., Rousse, G., Recham, N., Doublet, M. L., Jumas, J. C., and Tarascon, J. M. (2012b). “Single-step synthesis of FeSO4F1−y OH y (0 ≤ y ≤ 1) positive electrodes for Li-based batteries,” Chem. Mater. 24, 14721485.CrossRefGoogle Scholar
Barker, J., Gover, R. K. B., Burns, P., and Bryan, A. (2005). “A symmetrical lithium-ion cell based on lithium vanadium fluorophosphate, LiVPO4F,” Electrochem. Solid-State Lett. 8, A285A287.CrossRefGoogle Scholar
Barpanda, P., Recham, N., Chotard, J.-N., Djellab, K., Walker, W., Armand, M., and Tarascon, J.-M. (2010). “Structure and electrochemical properties of novel mixed Li(Fe1−x M x )SO4F (M=Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis,” J. Mater. Chem. 20, 16591820.CrossRefGoogle Scholar
Barpanda, P., Ati, M., Melot, B. C., Rousse, G., Chotard, J.-N., Doublet, M.-L., Sougrati, M. T., Corr, S. A., Jumas, J.-C., and Tarascon, J.-M. (2011a). “A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure,” Nat. Mater. 10, 772779.CrossRefGoogle ScholarPubMed
Barpanda, P., Chotard, J. N., Delacourt, C., Reynaud, M., Filinchuk, Y., Armand, M., Deschamps, M., and Tarascon, J. M. (2011b). “LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries,” Angew. Chem. Int. Ed. Engl. 50, 25262531.CrossRefGoogle Scholar
Cai, Y., Chen, G., Xu, X., Du, F., Li, Z., Meng, X., Wang, C., and Wei, Y. (2011). “First-principles calculations on the LiMSO4F/MSO4F (M=Fe, Co, and Ni) systems,” J. Phys. Chem. C 115, 70327037.CrossRefGoogle Scholar
Chen, D., Shao, G.-Q., Li, B., Zhao, G.-G., Li, J., Liu, J.-H., Gao, Z.-S., and Zhang, H.-F. (2014). “Synthesis, crystal structure and electrochemical properties of LiFePO4F cathode material for Li-ion batteries,” Electrochim. Acta 147, 663668.CrossRefGoogle Scholar
Chung, S. C., Barpanda, P., Nishimura, S. I., Yamada, Y., and Yamada, A. (2012). “Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries – a first principle computational study,” Phys. Chem. Chem. Phys. 14, 86788682.CrossRefGoogle ScholarPubMed
Dong, J., Yu, X., Sun, Y., Liu, L., Yang, X., and Huang, X. (2013). “Triplite LiFeSO4F as cathode material for Li-ion batteries,” J. Power Sources 244, 716720.CrossRefGoogle Scholar
Eriksson, R., Sobkowiak, A., Ångström, J., Sahlberg, M., Gustafsson, T., Edström, K., and Björefors, F. (2015). “Formation of tavorite-type LiFeSO4F followed by in situ X-ray diffraction,” J. Power Sources 298, 363368.CrossRefGoogle Scholar
Girish, H.-N., and Shao, G.-Q. (2015). “Advances in high-capacity Li2 MSiO4 (M=Mn, Fe, Co, Ni, …) cathode materials for lithium-ion batteries,” RSC Adv. 5, 9866698686.CrossRefGoogle Scholar
Guo, Z., Wei, Y., Zhang, D., Bie, X., Zhang, Y., Zhu, K., Zhang, R., and Chen, G. (2014). “Excellent thermal stability of tavorite Li x FeSO4F used as a cathode material for lithium ion batteries,” RSC Adv. 4, 6420064203.CrossRefGoogle Scholar
Jalem, R., Nakayama, M., and Kasuga, T. (2014). “Lithium ion conduction in tavorite-type LiMXO4F (MX: AlP, MgS) candidate solid electrolyte materials,” Solid State Ion. 262, 589592.CrossRefGoogle Scholar
Kim, M., and Kang, B. (2017). “Highly-pure triplite 3.9 V-LiFeSO4F synthesized by a single-step solid-state process and its high electrochemical performance,” Electrochim. Acta 228, 160166.CrossRefGoogle Scholar
Kim, M., Jung, Y., and Kang, B. (2015). “High electrochemical performance of 3.9 V LiFeSO4F directly synthesized by a scalable solid-state reaction within 1 h,” J. Mater. Chem. A 3, 75837590.CrossRefGoogle Scholar
Larson, A. C., and Von Dreele, R. B. (2004). “General Structure Analysis System (GSAS) (Report LAUR 86-748) (Los Alamos National Laboratory, Los Alamos, New Mexico).Google Scholar
Lee, S., and Park, S. S. (2014). “Comparative study of tavorite and triplite LiFeSO4F as cathode materials for lithium ion batteries: structure, defect chemistry, and lithium conduction properties from atomistic simulation,” J. Phys. Chem. C 118, 1264212648.CrossRefGoogle Scholar
Liu, L., Zhang, B., and Huang, X.-j. (2011). “A 3.9V polyanion-type cathode material for Li-ion batteries,” Prog. Nat. Sci. Mater. Int. 21, 211215.CrossRefGoogle Scholar
Majzlan, J., Navrotsky, A., Stevens, R., Donaldson, M., Woodfield, B. F., and Boerio-Goates, J. (2005). “Thermodynamics of monoclinic Fe2(SO4)3 ,” J. Chem. Thermodyn. 37, 802809.CrossRefGoogle Scholar
Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B. (1997). “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” J. Electrochem. Soc. 144, 11881194.CrossRefGoogle Scholar
Prabu, M., Reddy, M. V., Selvasekarapandian, S., Rao, G. V. S., and Chowdari, B. V. R. (2012). “Synthesis, impedance and electrochemical studies of lithium iron fluorophosphate, LiFePO4F cathode,” Electrochim. Acta 85, 572578.CrossRefGoogle Scholar
Radha, A. V., Furman, J. D., Ati, M., Melot, B. C., Tarascon, J. M., and Navrotsky, A. (2012). “Understanding the stability of fluorosulfate Li-ion battery cathode materials: a thermochemical study of LiFe1−x Mn x SO4F (0 ≤ x ≤ 1) polymorphs,” J. Mater. Chem. 22, 2444624452.CrossRefGoogle Scholar
Ramesh, T. N., Lee, K. T., Ellis, B. L., and Nazar, L. F. (2010). “Tavorite lithium iron fluorophosphate cathode materials: phase transition and electrochemistry of LiFePO4F-Li2FePO4F,” Electrochem. Solid-State Lett. 13, A43A47.CrossRefGoogle Scholar
Ramzan, M., Lebègue, S., and Ahuja, R. (2010). “Crystal and electronic structures of lithium fluorosulphate based materials for lithium-ion batteries,” Phys. Rev. B: Condens. Matter 82, 125101125105.CrossRefGoogle Scholar
Recham, N., Chotard, J.-N., Dupont, L., Delacourt, C., Walker, W., Armand, M., and Tarascon, J.-M. (2010). “A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries,” Nat. Mater. 9, 6874.CrossRefGoogle ScholarPubMed
Salanne, M., Marrocchelli, D., and Watson, G. W. (2012). “Cooperative mechanism for the diffusion of Li+ ions in LiMgSO4F,” J. Phys. Chem. C 116, 1861818625.CrossRefGoogle Scholar
Sebastian, L., Gopalakrishnan, J., and Piffard, Y. (2002). “Synthesis, crystal structure and lithium ion conductivity of LiMgFSO4 ,” J. Mater. Chem. 12, 374377.CrossRefGoogle Scholar
Sobkowiak, A., Roberts, M. R., Häggström, L., Ericsson, T., Andersson, A. M., Edström, K., Gustafsson, T., and Björefors, F. (2014). “Identification of an intermediate phase, Li1/2FeSO4F, formed during electrochemical cycling of tavorite LiFeSO4F,” Chem. Mater. 26, 46204628.CrossRefGoogle Scholar
Tripathi, R., Popov, G., Ellis, B. L., Huq, A., and Nazar, L. F. (2012). “Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering,” Energy Environ. Sci. 5, 62386246.CrossRefGoogle Scholar
Tripathi, R., Popov, G., Sun, X., Ryan, D. H., and Nazar, L. F. (2013). “Ultra-rapid microwave synthesis of triplite LiFeSO4F,” J. Mater. Chem. A 1, 29902994.CrossRefGoogle Scholar
Yahia, M. B., Lemoigno, F., Rousse, G., Boucher, F., Tarascon, J.-M., and Doublet, M.-L. (2012). “Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries,” Energy Environ. Sci. 5, 95849594.CrossRefGoogle Scholar
Supplementary material: File

Ma et al. supplementary material

Ma et al. supplementary material 1

Download Ma et al. supplementary material(File)
File 19.3 KB