Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T21:30:18.407Z Has data issue: false hasContentIssue false

Structure of AFeTi(PO4)3 (A=Ca,Cd) Nasicon phases from powder X-ray data

Published online by Cambridge University Press:  06 March 2012

Abderrahim Aatiq*
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Hicham Dhoum
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
*
a)Author to whom correspondence should be addressed; Electronic mail: [email protected]

Abstract

AFeTi(PO4)3 (A=Ca,Cd) materials were obtained by solid state reaction in air at 1000 °C. Structures of the two compounds were determined from X-ray diffraction data using Rietveld analysis. Both phases exhibit the Nasicon-type structure (R3¯c space group) with a statistical Fe(Ti) distribution within the framework. Their hexagonal cell parameters are a=8.518(1) Å, c=21.797(2) Å and a=8.534(1) Å, c=21.416(2) Å, for CaFeTi(PO4)3 and CdFeTi(PO4)3, respectively. Cd atoms occupy the M1 site in CdFeTi(PO4)3. From XRD data, it is difficult to distinguish without ambiguity between Ca2+ and Ti4+ ions in CaFeTi(PO4)3. Nevertheless from the cation–anion distance found after the structure determination, Ca2+ distribution within the M1 site of Nasicon structure are validated.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A., Delmas, C., El Jazouli, A., and Gravereau, P. (1998). “Structure and electrochemical study of Li2xMn(1−x)TiCr(PO4)3 (x=0–0.5) with Nasicon-like structure,” Ann. Chim. Sci. Mat. ZZZZZZ 23, 121124.CrossRefGoogle Scholar
Aatiq, A., Delmas, C., and El Jazouli, A. (2001). “Structural and Electrochemical Study of Li0.5Mn0.5Ti1.5Cr0.5(PO4)3,J. Solid State Chem. JSSCBI 158, 169174. jss, JSSCBI Google Scholar
Aatiq, A., Ménétrier, M., Croguennec, L., Suard, E., and Delmas, C. (2002). “On the structure of Li3Ti2(PO4)3,J. Mater. Chem. JMACEP 12, 29712978. jtc, JMACEP CrossRefGoogle Scholar
Aatiq, A., Ménétrier, M., El Jazouli, A., and Delmas, C. (2002). “Structural and lithium intercalation studies of Mn(0.5−x)CaxTi2(PO4)3 phases (0≤x≤0.50),Solid State Ionics SSIOD3 150, 391405. ssi, SSIOD3 Google Scholar
Ayyappan, S., Chang, J.-S., Stock, N., Hatfield, R., Rao, C. N. R., and Cheetham, A. K. (2000). “Synthesis, characterization and acid-base catalytic properties of ammonium-containing tin (II) phosphates: [NH4][Sn4P3O12] and [NH4][SnPO4],I. J. Inorg. Mater. ZZZZZZ 2, 2127.Google Scholar
Benmoussa, A., Borel, M. M., Grandin, A., Leclaire, A., and Raveau, B. (1998). “Une nouvelle famille de titanophosphates a valence mixte de type Nasicon: les oxydes ATi2(PO4)3 (A=Ca,Sr,Ba),Ann. Chim. (Paris) ANCPAC 14, 181185. aco, ANCPAC Google Scholar
Brown, I. D., and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 41, 244247. acl, ASBSDK Google Scholar
Cherkaoui, F., Villeneuve, G., Delmas, C., and Hagenmuller, P. (1986). “Sodium motion in the Nasicon related Na(1+x)Zr(2−x)Inx(PO4)3 solid solution: An NMR study,” J. Solid State Chem. JSSCBI 65, 293300. jss, JSSCBI CrossRefGoogle Scholar
Hagman, L., and Kierkegaard, P. (1968). “The crystal structure of NaMe2IV(PO4)3; Me=Ge, Ti, Zr,” Acta Chem. Scand. (1947–1973) ACSAA4 22, 18221932. 9em, ACSAA4 Google Scholar
Hong, H. Y-P. (1976). “Crystal structures and crystal symetry in the system Na(1+x)Zr2SixP(3−x)O12,Mater. Res. Bull. MRBUAC 11, 173182. mrb, MRBUAC CrossRefGoogle Scholar
Lightfoot, P., Woodcock, D. A., Jorgensen, J. D., and Short, S. (1999). “Low expansion materials: a comparison of the structure behaviour of La0.33Ti2(PO4)3, Sr0.5Ti2(PO4)3 and NaTi2(PO4)3,I. J. Inorg. Mater. ZZZZZZ 1, 5360.Google Scholar
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., and Goodenoogh, J. B. (1997). “Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation,” Electrochem. Soc. Interface ELSIE3 144, 25812586. els, ELSIE3 Google Scholar
Perret, R., and Boudjada, A. (1977). “Les phosphates triples MIICrTi(PO4)3 MII=Mg, Mn, Co, Ni, Zn, Cd, Pb, Ca, Sr, Ba,” Bull. Soc. Fr. Mineral. Cristallogr. BUFCAE 100, 58. buf, BUFCAE Google Scholar
Rodrigo, J. L., and Alamo, J. (1991). “Phase transition in NaSn2(PO4)3 and thermal expansion of NaM2(PO4)3; M=Ti, Sn, Zr,” Mater. Res. Bull. MRBUAC 26, 475480. mrb, MRBUAC Google Scholar
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA–CNRS), Saclay, France.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN A32, 751767. aca, ACACBN Google Scholar
Sugantha, M., Varadaraju, U. V., and Subba Rao, G. V. (1994). “Synthesis and characterisation of NZP phases, AM′3+M″4+P3O12,J. Solid State Chem. JSSCBI 111, 3340. jss, JSSCBI Google Scholar