Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T15:46:50.216Z Has data issue: false hasContentIssue false

Structure of a new CaII 1/3SbV 1/6BiIII 1/2PO4 phosphate

Published online by Cambridge University Press:  10 October 2013

Abderrahim Aatiq*
Affiliation:
Département de Chimie, Laboratoire de Physico-Chimie des Matériaux Appliqués, Faculté des Sciences Ben M'Sik, Université HassanII-Mohammédia, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
My Rachid Tigha
Affiliation:
Département de Chimie, Laboratoire de Physico-Chimie des Matériaux Appliqués, Faculté des Sciences Ben M'Sik, Université HassanII-Mohammédia, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A new Ca1/3Sb1/6Bi1/2PO4 “CaSb0.50Bi1.50(PO4)3” phosphate has been synthesized by conventional solid-state reaction techniques at 900 °C in air atmosphere. Their crystallographic structures were determined at room temperature from X-ray powder diffraction (XRPD) data using the Rietveld analysis. CaII 1/3SbV 1/6BiIII 1/2PO4 material possesses the high-temperature BiPO4 monoclinic structure variety. It crystallizes in monoclinic system with P21/m space group and the cell parameters are: a = 4.9358(1) Å, b = 6.9953(2), c = 4.7075(1) Å, and β = 96.2(1)°. Their structure can be described as composed of alternating edge-sharing AO8 (A = Ca, Sb, Bi) bisdisphenoids and PO4 tetrahedra forming chains parallel to the b axis. Every AO8 polyhedron is surrounded by six PO4 and every PO4 tetrahedron is surrounded by six AO8 polyhedra. Infrared spectroscopic study was used to obtain further structural information.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A., Tigha, R., Hassine, R., and Saadoune, I. (2006). “Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases,” Powder Diffr. 21, 4551.CrossRefGoogle Scholar
Aatiq, A., Tigha, R., and Benmokhtar, S. (2012). “Structure, infrared and Raman spectroscopy of selected compositions within the Sr(0.5+ x )Sb(1− x )Fe(1+ x )(PO4)3 (0 ≤ x ≤ 0.50) system,” J. Mater. Sci. 47(3), 13541364.Google Scholar
Alekseev, V. G., Gorelov, I. P., and Kornilov, M. V. (2000). “Membrane electrodes selective for hydrogen phosphate ions,” J. Anal. Chem. 55, 10551057.Google Scholar
Anantharamulu, N., Koteswara Rao, K., Vithal, M., and Prasad, G. (2009). “Preparation, characterization, impedance and thermal expansion studies of Mn0.5MSb(PO4)3 (M = Al, Fe and Cr),” J. Alloys Compd. 479, 684691.Google Scholar
Arunkumar, P., Jayajothi, C., Jeyakumar, D., and Lakshminarasimhan, N. (2012). “Structure–property relations in hexagonal and monoclinic BiPO4:Eu3+nanoparticles synthesized by polyol-mediated method,” RSC Advances 2, 14771485.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl Crystallogr. 24, 987993.Google Scholar
Calestani, G. and Andretti, G. D. (1984). “The crystal-structure of the Pb0.5Th0.5VO4 polymorphs with scheelite-type, zircon-type and huttonite-type structures,” Z Kristallogr. 168(1–4), 4151.Google Scholar
Chang, T. S., Li, G. J., Shin, C. H., Lee, Y. K., and Yun, S. S. (2000). “Catalytic behavior of BiPO4 in the multicomponent bismuth phosphate system on the propylene ammoxidation,” Catal. Lett. 68, 229234.Google Scholar
Cho, I-S., Kim, J. R., Kim, D. W., and Hong, K. S. (2006). “Phase transformation and microwave dielectric properties of BiPO4 ceramics,” J. Electroceram. 16, 379383.Google Scholar
Clavier, N., Podor, R., and Dacheux, N. (2011). “Crystal chemistry of the monazite structure,” J. Eur. Ceram. Soc. 31, 941976.Google Scholar
Cornilsen, B. and Condrate, R. (1979). “The vibrational spectra of β-Ca2P2O7 and γ-Ca2P2O7 ,” J. Inorg. Nucl. Chem. 41, 602605.Google Scholar
Fukuda, K., Moriyama, A., and Iwata, T. (2005). “Crystal structure, phase transition and anisotropic thermal expansion of barium zirconium diorthophosphate, BaZr(PO4)2 ,” J. Solid State Chem. 178, 21442151.Google Scholar
Guan, M., Sun, J., Tao, F., and Xu, Z. (2008). “A host crystal for the rare-earth ion dopants: synthesis of pure and Ln-doped urchinlike BiPO4 structure and its photoluminescence,” Cryst. Growth Des. 8, 26942697.Google Scholar
Holgye, Z. and Poliak, R. (1991). “Influence of some metal ions on the coprecipitation of Am(III) and Pu(IV) with BiPO4 ,” J. Radioanal. Nucl. Chem. 153, 267272.Google Scholar
Kitaev, D. B., Volkov, Y. F., Orlova, A. I. (2004). “Orthophosphate of tetravalent Ce, Th, U, Np and Pu with the monazite structure,” Radiochemistry 46(3), 211217.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. 23, 447452.CrossRefGoogle Scholar
Masse, R. and Durif, A. (1982). “Etude structurale de la forme haute température du monophosphate de bismuth BiPO4 ,” Compt. Rend. Hebd. Seances Acad. Sci. 300(17), 849851.Google Scholar
Mooney-Slater, R. C. L. (1962). “Polymorphic forms of bismuth phosphate,” Z. Kristallogr. 117, 371385.Google Scholar
Orlova, A. I., Kitaev, D. B., Kazantsev, N. G., Samoilov, S. G., Kurazhkovskaya, V. S., Vopilina, E. N. (2002). “Double phosphate of (CeIV) and some mono- and divalent elements: synthesis and crystal structure,” Radiochemistry 4, 326331.Google Scholar
Orlova, A. I., Kitaev, D. B., Kemenov, D. V., Orlova, M. P., Kazantsev, G. N., Samoilov, S. G., and Kurazhkovskaya, V. S. (2003). “Synthesis and crystal-chemical properties of phosphates BIIRIIIMIV(PO4)3 containing f, d, and alkaline-earth elements,” Radiochemistry 45, 103109.Google Scholar
Pan, C. and Zhu, Y. (2010). “New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye,” Environ. Sci. Technol. 44, 55705574.Google Scholar
Pan, C. and Zhu, Y. (2011). “Size-controlled synthesis of BiPO4 nanocrystals for enhanced photocatalytic performance,” J. Mater. Chem. 21, 42354241.Google Scholar
Pan, C., Li, D., Ma, X., Chen, Y., and Zhu, Y. (2011). “Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4 ,” Catal. Sci. Technol. 1, 13991405.Google Scholar
Popa, K., Bregiroux, D., Konnings, J. M., Gouder, T., Popa Aurelian, F., Geisler, T., and Raison, E. P. (2007). “The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry,” J. Solid State Chem. 180, 23462355.CrossRefGoogle Scholar
Popa, K., Wallez, G., Bregiroux, D., and Loiseau, P. (2011). “ M IIGe(PO4)2 (M = Ca, Sr, Ba): crystal structure, phase transitions and thermal expansion,” J. Solid State Chem. 184, 26292634.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192, 5569.Google Scholar
Romero, B., Bruque, S., Aranda, M. A. G., and Iglesias, J. E. (1994). “Syntheses, crystal structures, and characterization of bismuth phosphates,” Inorg. Chem. 33, 18691874.Google Scholar
Roming, M. and Feldmann, C. (2009). “Synthesis and characterization of nanoscaled BiPO4 and BiPO4:Tb,” J. Mater. Sci. 44, 14121415.Google Scholar
Rose, D. (1980). “Brabantite, a new mineral of the monazite group,” Neues Jahrb. Mineral. Monatsh. 247, 247257.Google Scholar
Sudarsan, V., Muthe, K. P., Vyas, J. C., and Kulshreshtha, S. K. (2002). “PO4 3- tetrahedra in SbPO4 and SbOPO4: a 31P NMR and XPS study,” J. Alloys Compd. 336, 119123.Google Scholar
Webb, N. C. (1966). “The crystal structure of β-Ca2P2O7 ,” Acta Crystallogr. 21, 942984.Google Scholar