Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T13:26:59.007Z Has data issue: false hasContentIssue false

Structure and X-ray reference diffraction patterns of (Ba6−xSrx)R2Co4O15 (x = 1, 2) (R = lanthanides)

Published online by Cambridge University Press:  25 April 2013

W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, NIST, Gaithersburg, Maryland 20899
G. Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
Y.G. Yan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, People's Republic of China
J.A. Kaduk
Affiliation:
BCPS, Illinois Institute of Technology, Chicago, Illinois 60616
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The structure and X-ray patterns of two series of barium lanthanide cobaltates, namely, Ba4Sr2R2Co4O15 (R = La, Nd, Sm, Eu, Gd, and Dy), and Ba5SrR2Co4O15 (R = La, Nd, Sm, Eu, and Gd) have been determined. These compounds crystallize in the space group P63mc; the unit-cell parameters of Ba4Sr2R2Co4O15 (R from La to Dy) decrease from a = 11.6128(2) Å to 11. 5266(9) Å, c = 6.869 03(11) to 6. 7630(5) Å, and V = 802.23(3) Å3 to 778.17(15) Å3, respectively. In the Ba5SrR2Co4O15 series (R = La to Gd), the unit-cell parameters decrease from a = 11.735 44(14) Å to 11.619 79(12) Å, c = 6.942 89 (14) Å to 6.836 52(8) Å, and V = 828.08(3) Å3 to 799.40(2) Å3. In the general structure of (Ba6−xSrx)R2Co4O15, there are four Co ions per formula unit occupying one CoO6 octahedral and three CoO4 tetrahedral units. Through corner-sharing of these polyhedra, a larger Co4O15 unit is formed. Sr2+ ions adopt both octahedral and 8-fold coordination environment. R3+ ions adopt 8-fold coordination (mixed site with Sr), while the larger Ba2+ ions assume both 10- and 11-fold coordination environments. The samples were found to be insulators. X-ray diffraction patterns of these samples have been determined and submitted to the Powder Diffraction File (PDF).

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Doi, Y., Hinatsu, Y., and Ohoyama, K. (2006). “Magnetic properties of the spin tetramer compound Ba6Nd2Fe4O15,” Chem. Mater. 18, 785789.CrossRefGoogle Scholar
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.CrossRefGoogle Scholar
Brown, I. D., and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B 41, 244247.CrossRefGoogle Scholar
Grebille, D., Lambert, S., Bouree, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.CrossRefGoogle Scholar
Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). “In situ growth of c-axis-oriented Ca3Co4O9 thin films on Si(100),” Appl. Phys. Lett. 86, 082103.CrossRefGoogle Scholar
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748, Los Alamos, USA.Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9,” Phys. Rev. B 62, 166175.CrossRefGoogle Scholar
Mevs, H. and Müller-Buschbaum, H. (1990a). “Zur Kenntnis von Ba6La2Co4O15”, Z. Anorg. Allg. Chem. 584, 114118; ICSD collection code 69635.CrossRefGoogle Scholar
Mevs, H. and Müller-Buschbaum, H. (1990b). “Neue Verbindungen mit Ba6Ln2M43+O15-Typ: Ba6Nd2Fe4O15, Ba5SrLa2Fe4O15 und Ba5SrNd2Fe4O15,” J. Less-Common Metals 158, 147152.CrossRefGoogle Scholar
Mevs, H. and Müller-Buschbaum, H. (1990c). “Ba6Nd2Fe4O15: Ein oxometallat mit neuem strukturtyp,” J. Less-Common Metals 157, 173178.CrossRefGoogle Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds”, J. Solid State Chem. 178, 16701674.CrossRefGoogle Scholar
Mikami, M., Funashashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6,” J. Appl. Phys. 94, 65796582.CrossRefGoogle Scholar
Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−xBax)3Co4O9 thin films using combinatorial methods,” Appl. Surface Sci. 197, 442447.CrossRefGoogle Scholar
Müller-Buschbaum, H. and Martin, F. D. (1992). “Syntheses und kristallstruktur von Ba4.5Ca1.5La2Fe4O15, Ba5CaEu2Fe4O15, and Ba5CaNd2Co4O15”, Z. Anorg. Allg. Chem. 617, 8488; ICSD collection code 72338.CrossRefGoogle Scholar
Müller-Buschbaum, H. and Uensal, H. (1996). “Zur Kenntnis Ba6Pr2Co4O15 und Ba5SrPr2Co4O15”, Z. Naturf., Teil B: Anorg. Chem., Org. Chem. 51, 453455; ICSD collection codes 380091 and 380092.CrossRefGoogle Scholar
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2, 6571.CrossRefGoogle Scholar
Rüter, I. and Müller-Buschbaum, H. k. (1990). “Zur Krsitallchemie von oxometallaten der Zusammensetzung Ba6Nd2Al4O15 Neue Ergebnisse an Ba4.5Ca1.5Nd2Fe4O15 und Ba5CaSm2Fe4O15,” J. Less-Common Metals 162, 175180.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.CrossRefGoogle Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, 1268512687.CrossRefGoogle Scholar