Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T05:44:59.510Z Has data issue: false hasContentIssue false

Structural dissymmetrization of optically anisotropic Grs64±1Adr36±1Sps2 grandite from Meka Presedla (Kopaonik Mt., Serbia)

Published online by Cambridge University Press:  28 November 2019

Pavle Tančić*
Affiliation:
Geological Survey of Serbia, Rovinjska 12, 11000Belgrade, Serbia
Aleksandar Kremenović
Affiliation:
Laboratory of Crystallography, Faculty of Mining and Geology, University of Belgrade, Ðušina 7, 11000Belgrade, Serbia
Predrag Vulić
Affiliation:
Laboratory of Crystallography, Faculty of Mining and Geology, University of Belgrade, Ðušina 7, 11000Belgrade, Serbia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

In this paper, grandite core with Grs64±1Adr36±1Sps2 composition was crystallographically studied. This core represents zone A of the macroscopically visible five A–E zones of the optically anisotropic Grs58–64Adr36–42Sps2 grandite. The applied procedure includes the detailed analysis of the powder diffraction patterns, and the Rietveld refinements of the crystal structures in a series of 18 space groups and two mixtures, which were followed by the comparative analysis of the R-values, site occupancy factors, and the bond lengths and angles. Synthesis of all of the presented results allows us to undoubtedly conclude that studied grandite is not cubic, neither as monophase nor as multiple phases in a mixture. Namely, it was established that structural dissymmetrization occurred and that it crystallized in the disordered rhombohedral $R\bar{3}c$ or orthorhombic Fddd space groups, whereby the first one is more probable. Beside the established lower symmetry of the studied grandite, which could be treated as the primary cause, the residual strain is also not excluded as the second possible cause for its slight optical anisotropy.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aines, R. D. and Rossman, G. R. (1984). “The hydrous component in garnets: pyralspites,” Am. Mineral. 69, 11161126.Google Scholar
Akizuki, M. (1984). “Origin of optical variations in grossular–andradite garnet,” Am. Mineral. 69, 328338.Google Scholar
Akizuki, M. (1989). “Growth structure and crystal symmetry of grossular garnets from the Jeffrey Mine Asbestos, Quebec, Canada,” Am. Mineral. 74, 859864.Google Scholar
Akizuki, M., Takéuchi, Y., Terada, T., and Kudoh, Y. (1998). “Sectoral texture of cubo-dodecahedral garnet in grandite,” Neues. Jahrb. Miner. Mh. 1998, 565576.Google Scholar
Allen, F. M. and Buseck, P. R. (1988). “XRD, FTIR and TEM studies of optically anisotropic grossular garnets,” Am. Mineral. 73, 568584.Google Scholar
Andrut, M., Wildner, M., and Beran, A. (2002). “The crystal chemistry of birefringent natural uvarovites. Part IV. OH defect incorporation mechanisms in non-cubic garnets derived from polarized IR spectroscopy,” Eur. J. Mineral. 14, 10191026. doi:10.1127/0935-1221/2002/0014-1019.CrossRefGoogle Scholar
Antao, S. M. (2013a). “Three cubic phases intergrown in a birefringent andradite–grossular garnet and their implications,” Phys. Chem. Mineral. 40, 705716. doi:10.1007/s00269-013-0606-4.CrossRefGoogle Scholar
Antao, S. M. (2013b). “The mystery of birefringent garnet: is the symmetry lower than cubic?Powder Diffr. 28, 281288. doi:10.1017/S0885715613000523.CrossRefGoogle Scholar
Antao, S. M. and Klincker, A. M. (2013). “Origin of birefringence in andradite from Arizona, Madagascar and Iran,” Phys. Chem. Mineral. 40, 575586. doi:10.1007/s00269-013-0594-4.CrossRefGoogle Scholar
Badar, M. A., Hussain, S., Niaz, S., and ur Rehman, S. (2016). “Anomalous optical variations in the grossular garnet from the Eden Mills, Belvidere Mountain (Vermont, USA),” Arab J. Geosci. 9, 545. doi:10.1007/s12517-016-2579-3.CrossRefGoogle Scholar
Becker, U. and Pollok, K. (2002). “Molecular simulations of interfacial and thermodynamic mixing properties of grossular–andradite garnets,” Phys. Chem. Mineral. 29, 5264. doi:10.1007/s002690100211.CrossRefGoogle Scholar
Berar, J. F. and Lelann, P. (1991). “E.S.D.'s and estimated probable error obtained in Rietveld refinements with local correlations,” J. Appl. Cryst. 24, 15.CrossRefGoogle Scholar
Blanc, Y. and Maisonneuve, J. (1973). “Sur la biréfringence des grenats calciques,” Bull. Soc. fr. Minéral. Cristallogr. 96, 320321.Google Scholar
Brown, D. and Mason, R. A. (1994). “An occurrence of sectored birefringence in almandine from the Gagnon Terrane, Labrador,” Can. Mineral. 32, 105110.Google Scholar
Chase, A. B. and Lefever, R. A. (1960). “Birefringence of synthetic garnets,” Am. Mineral. 45, 11261129.Google Scholar
Foord, E. E. and Mills, B. A. (1978). “Biaxiality in ‘isometric’ and ‘dimetric’ crystals,” Am. Mineral. 63, 316325.Google Scholar
Frank-Kamenetskaya, O. V., Rozhdestvenskaya, I. V., Shtukenberg, A. G., Bannova, I. I., and Skalkina, Y. A. (2007). “Dissymmetrization of crystal structures of grossular–andradite garnets Ca3(Al, Fe)2(SiO4)3,” Struct. Chem. 18, 493500. doi:10.1007/s11224-007-9171-0.CrossRefGoogle Scholar
Gali, S. (1983). “Grandite garnet structures in connection with the growth mechanism,” Z. Kristallogr. 163, 4352.Google Scholar
Gali, S. (1984). “Reduction of symmetry in grandite solid solution,” Acta Geol. Hisp. 19(4), 287293.Google Scholar
Griffen, D. T., Hatch, D. M., Phillips, W. R., and Kulaksiz, S. (1992). “Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet,” Am. Mineral. 74, 399406.Google Scholar
Hammonds, K. D., Bosenick, A., Dove, M. T., and Heine, V. (1998). “Rigid unit modes in crystal structures with octahedrally coordinated atoms,” Am. Mineral. 74, 352359.Google Scholar
Hatch, D. M. and Griffen, D. T. (1989). “Phase transitions in the grandite garnets,” Am. Mineral. 74, 151159.Google Scholar
Hirai, H. and Nakazawa, H. (1986). “Visualising low symmetry of a grandite garnet on precession photographs,” Am. Mineral. 71, 12101213.Google Scholar
Hofmeister, A. M., Schaal, R. B., Campbell, K. R., Berry, S. L., and Fagan, T. J. (1998). “Prevalence and origin of birefringence in 48 garnets from the pyrope-almandine-grossularite-spessartine quaternary,” Am. Mineral. 83, 12931301.CrossRefGoogle Scholar
Ingerson, E. and Barksdale, J. D. (1943). “Iridescent garnet from the Adelaide Mining District, Nevada,” Am. Mineral. 28, 303312.Google Scholar
Ishizawa, N. and Inagaki, Y (2008). “A Guide to Discriminating the Rhombohedral Cell from the Face-Centred Pseudo Cubic Cell,” Ceramics Research Center, Annual Report. 8, 35–49.Google Scholar
Ivanova, T. I., Shtukenberg, A. G., Punin, Y. O., Frank-Kamenetskaya, O. V., and Sokolov, P. B. (1998). “On the complex zonality in grandite garnets and implications,” Mineral. Mag. 62, 857868.CrossRefGoogle Scholar
Jamtveit, B. (1991). “Oscillatory zonation patterns in hydrothermal grossular–andradite garnet: nonlinear dynamics in regions of immiscibility,” Am. Mineral. 76, 13191327.Google Scholar
Jamtveit, B., Ragnarsdottir, K., and Wood, B. (1995). “On the origin of zoned grossular–andradite garnets in hydrothermal systems,” Eur. J. Mineral. 7, 13991410.CrossRefGoogle Scholar
Jamtveit, B., Wogelius, R., and Fraser, D. (1993). “Zonation patterns of skarn garnets: records of hydrothermal system evolution,” Geology. 21, 113116.2.3.CO;2>CrossRefGoogle Scholar
Kingma, K. J. and Downs, J. W. (1989). “Crystal-structure analysis of a birefringent andradite,” Am. Mineral. 74, 13071316.Google Scholar
Kitamura, K. and Komatsu, H. (1978). “Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al,Fe)5O12,” Kris. Tech. 13, 811816.CrossRefGoogle Scholar
Kobayashi, S., Miyawaki, R., Momma, K., Fujisawa, A., and Kaneda, H. (2013). “Anisotropic garnet from the Yamansu ore deposit, Xinjiang, China,” J. Mineral. Petrol. Sci. 108, 245254. doi:10.2465/jmps.120927.CrossRefGoogle Scholar
Lessing, P. and Standish, R. P. (1973). “Zoned garnet from Crested Butte, Colorado,” Am. Mineral. 58, 840842.Google Scholar
McAloon, B. P. and Hofmeister, A. M. (1993). “Single-crystal absorption and reflection infrared spectroscopy of birefringent grossular–andradite garnets,” Am. Mineral. 78, 957967.Google Scholar
McAloon, B. P. and Hofmeister, A. M. (1995). “Single-crystal IR spectroscopy of grossular–andradite garnets,” Am. Mineral. 80, 11451156.CrossRefGoogle Scholar
Milke, R. (2004). “Spiral growth of grossular under hydrothermal conditions,” Am. Mineral. 89, 211218.CrossRefGoogle Scholar
Murad, E. (1976). “Zoned birefringent garnets from Thera Island, Santorini Group (Aegean Sea),” Mineral Mag. 40, 715719.CrossRefGoogle Scholar
Nakamura, Y., Kuribayashi, T., and Nagase, T. (2016). “Cation ordering of {110} and {211} sectors in grandite from Mali,” J. Mineral. Petrol. Sci. 108, 245254. doi:10.2465/jmps.160312.Google Scholar
Novak, G. A. and Gibbs, G. V. (1971). “The crystal chemistry of the silicate garnets,” Am. Mineral. 56, 791825.Google Scholar
Resende, J. A. L. C., and Fernandes, N. G., (2005). “X-ray powder refinement of a natural garnet from Diamantina, Minas Gerais, Brazil,” Acta Crystallogr. E61, 265267. doi:10.1107/S1600536805035695.Google Scholar
Robinson, K., Gibbs, G. V., and Ribbe, P. H. (1971). “Quadratic elongation: a quantitative measure of distortion in coordination polyhedra,” Science. 172, 567570.CrossRefGoogle ScholarPubMed
Rodić, D., Mitrić, M., Tellgren, R., Rundlof, H., and Kremenović, A. (1999). “True magnetic structure of the ferromagnetic garnet Y3Fe5O12 and magnetic moments of iron ions,” J. Magn. Magn. Mater. 191, 137145. doi:10.1016/S0304-8853(98)00317-5.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). Program Fullprof (Computer software), Coll. Abs. of Powd. Diffr. Meeting, Toulouse, p. 127.Google Scholar
Rossman, G. R. and Aines, R. D. (1986). “Spectroscopy of a birefringent grossular from Asbestos, Quebec, Canada,” Am. Mineral. 71, 779780.Google Scholar
Rossmanith, E. and Armbruster, T. (1995). “The intensity of forbidden reflections of pyrope: Umweganregung or symmetry reduction?Z. Kristallogr. 210, 645649.Google Scholar
Schingaro, E., Lacalamita, M., Mesto, E., Ventruti, G., Pedrazzi, G., Ottolini, L., and Scordari, F. (2016). “Crystal chemistry and light elements analysis of Ti-rich garnets,” Am. Mineral. 101, 371384. doi:10.2138/am-2016-5439.CrossRefGoogle Scholar
Shannon, R. D. and Prewitt, C. T., (1969). “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B25, 925946.CrossRefGoogle Scholar
Shtukenberg, A. G., Popov, D. Y., and Punin, Y. O. (2002). “An application of the point-dipole model to the problem of optical anomalies in grandite garnets,” Mineral. Mag. 66, 275286. doi:10.1180/0026461026620028.CrossRefGoogle Scholar
Shtukenberg, A. G., Popov, D. Y., and Punin, Y. O. (2005). “Growth ordering and anomalous birefringence in ugrandite garnets,” Mineral. Mag. 69, 537550. doi:10.1180/0026461056940269.CrossRefGoogle Scholar
Shtukenberg, A. G., Punin, Y. O., Frank-Kamenetskaya, O. V., Kovalev, O. G., and Sokolov, P. B. (2001). “On the origin of anomalous birefringence in grandite garnets,” Mineral. Mag. 65, 445459. doi:10.1180/002646101300119538.CrossRefGoogle Scholar
Shtukenberg, A. G., Punin, Y. O., and Frank-Kamenetskaya, O. V. (2006). “The kinetic ordering and growth dissymmetrisation in crystalline solid solutions,” Russ. Chem. Rev. 75, 10831106.CrossRefGoogle Scholar
Takéuchi, Y. and Haga, N. (1976). “Optical anomaly and structure of silicate garnets,” Proc. Jpn. Acad. 52, 228231.CrossRefGoogle Scholar
Takéuchi, Y., Haga, N., Umizu, S., and Sato, G. (1982). “The derivative structure of silicate garnets in grandite,” Z. Kristallogr. 158, 5399. doi:10.1524/zkri.1982.158.12.53.CrossRefGoogle Scholar
Tančić, P., Vulić, P., Kaindl, R., Sartory, B., and Dimitrijević, R. (2012). “Macroscopically-zoned grandite from the garnetite skarn of Meka Presedla (Kopaonik Mountain, Serbia),” Acta Geol. Sin. 86, 393406. doi:10.1111/j.1755-6724.2012.00668.x.CrossRefGoogle Scholar
Whitney, D. L. and Evans, B. W. (2010). “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185187.CrossRefGoogle Scholar
Wildner, M. and Andrut, M. (2001). “The crystal chemistry of birefringent natural uvarovites: Part II. Single-crystal X-ray structures,” Am. Mineral. 86, 12311251.CrossRefGoogle Scholar
Supplementary material: File

Tančić et al. supplementary material

Tančić et al. supplementary material

Download Tančić et al. supplementary material(File)
File 756.2 KB