Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-17T03:43:11.176Z Has data issue: false hasContentIssue false

Structural and Raman spectroscopic studies of the two M0.50SbFe(PO4)3 (M = Mg, Ni) NASICON phases

Published online by Cambridge University Press:  02 May 2017

Abderrahim Aatiq*
Affiliation:
Département de Chimie, Laboratoire de Physico-Chimie des Matériaux Appliqués, Université Hassan II de Casablanca, Faculté des Sciences Ben M'Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Asmaa Marchoud
Affiliation:
Département de Chimie, Laboratoire de Physico-Chimie des Matériaux Appliqués, Université Hassan II de Casablanca, Faculté des Sciences Ben M'Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Hajar Bellefqih
Affiliation:
Département de Chimie, Laboratoire de Physico-Chimie des Matériaux Appliqués, Université Hassan II de Casablanca, Faculté des Sciences Ben M'Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
My Rachid Tigha
Affiliation:
Département de Chimie, Laboratoire de Physico-Chimie des Matériaux Appliqués, Université Hassan II de Casablanca, Faculté des Sciences Ben M'Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Structures of the two M0.50SbFe(PO4)3 (M = Mg, Ni) phases, abbreviated as [Mg0.50] and [Ni0.50], were determined at room temperature from X-ray diffraction (XRD) powder data using the Rietveld analysis. Both compounds belong to the NASICON structural family. XRD patterns of [Mg0.50] and [Ni0.50] phases were easily indexed with a primitive hexagonal unit cell [P$\overline 3 $ space group, Z = 6] similar to that already obtained for La0.33Zr2(PO4)3. Obtained unit cells parameters are [a = 8.3443(1) Å, c = 22.3629(1) Å], and [a = 8.3384(1), c = 22.3456(1) Å], respectively, for [Mg0.50] and [Ni0.50] phosphates. In both samples, the [Sb(Fe)(PO4)3] NASICON framework is preserved and a partially-ordered distribution of Sb5+ and Fe3+ ions is observed. Raman spectroscopic study was used to obtain further structural information about the nature of bonding in [Mg0.50] and [Ni0.50] phases.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A., Ménétrier, M., El Jazouli, A., and Delmas, C. (2002). “Structural and lithium intercalation studies of Mn(0.5-x)Ca x Ti2(PO4)3 phases (0 ≤ x ≤ 0.50),” Solid State Ion. 150, 391405.Google Scholar
Aatiq, A., Hassine, R., Tigha, R., and Saadoune, I. (2005). “Structures of two newly synthesized A0.50SbFe(PO4)3 (A = Mn, Cd) NASICON phases,” Powder Diffr. 20, 3339.CrossRefGoogle Scholar
Aatiq, A., Tigha, R., Hassine, R., and Saadoune, I. (2006). “Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 NASICON phases,” Powder Diffr. 21, 4551.Google Scholar
Aatiq, A., Tigha, R., and Benmokhtar, S. (2012). “Structure, infrared and Raman spectroscopic studies of new Sr0.50SbFe(PO4)3 and SrSb0.50Fe1.50(PO4)3 NASICON phases,” J. Mater. Sci. 47, 13541364.CrossRefGoogle Scholar
Aatiq, A., Tigha, R., Fakhreddine, R., and Marchoud, A. (2015). “Structure and spectroscopic characterization of the two PbSb0.5Fe1.5(PO4)3 and Pb0.5SbFe(PO4)3 phosphates with NASICON type-structure,” J. Mater. Environ. Sci. 6(12), 34833490.Google Scholar
Alami Talbi, M., Brochu, R.; Parent, C., Rabardel, L., and Le Flem, G. (1994). “The new phosphates Ln 1/3Zr2(PO4)3 (Ln = Rare Earth),” J. Solid State Chem. 110, 350355.Google Scholar
Anantharamulu, N., Rao, K. K., Vithal, M., and Prasad, G. (2009). “Preparation, characterization, impedance and thermal expansion studies of Mn0.5MSb(PO4)3 (M = Al, Fe and Cr),” J. Alloys Compd. 479, 684691.Google Scholar
Anuar, N. K., Adnan, S. B. R. S., and Mohamed, N. S. (2014). “Characterization of Mg0.5Zr2(PO4)3 for potential use as electrolyte in solid state magnesium batteries,” Ceram. Int. 40, 1371913727.Google Scholar
Barré, M., Crosnier-Lopez, M. P., Le Berre, F., Emery, J., Suard, E., and Fourquet, J. L. (2005). “Room temperature crystal structure of La1/3Zr2(PO4)3, a NASICON-type compound,” Chem. Mater. 17, 66056610.Google Scholar
Barré, M., Le Berre, F., Crosnier-Lopez, M. P., Bohnke´, O., Emery, J., and Fourquet, J. L. (2006). “La3+ Diffusion in the NASICON-type compound La1/3Zr2(PO4)3: X-ray thermodiffraction, 31P NMR, and ionic conductivity investigations,” Chem. Mater. 18, 54865491.Google Scholar
Barré, M., Crosnier-Lopez, M. P., Le Berre, F., Suard, E., and Fourquet, J. L. (2007). “Synthesis and structural study of a new NASICON-type solid solution: Li1−x La x/3Zr2(PO4)3 ,” J. Solid State Chem. 180, 10111019.Google Scholar
Barth, S., Olazcuaga, R., Gravereau, P., le Flem, G., and Hagenmüller, P. (1993). “Mg0.5Ti2 (PO4)3: a new member of the NASICON family with low thermal expansion,” Mater. Lett. 16, 96101.Google Scholar
Benmokhtar, S., El Jazouli, A., Aatiq, A., Chaminade, J. P., Gravereau, P., Wattiaux, A., Fournes, L., and Grenier, J. C. (2007). “Synthesis, structure and characterisation of Fe0.50Ti2(PO4)3: a new material with NASICON-like structure,” J. Solid State Chem. 180, 20042012.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B: Struct. Sci. B41, 244247.CrossRefGoogle Scholar
Bykov, D. M., Gobechia, E. R., Kabalov, Yu. K., Orlova, A. I., and Tomilin, S. V. (2006). “Crystal structures of lanthanide and zirconium phosphates with general formula Ln0.33Zr2(PO4)3, where Ln = Ce, Eu, Yb),” J. Solid State Chem. 179, 31013106.CrossRefGoogle Scholar
Butt, G., Sammes, N., Tompsett, G., Smirnova, A., and Yamamoto, O. (2004). “Raman spectroscopy of superionic Ti-doped Li3Fe2(PO4)3 and LiNiPO4 structures,” J. Power Sources 134, 7279.CrossRefGoogle Scholar
Crosnier-Lopez, M. P., Barré, M., Le Berre, F., and Fourquet, J. L. (2006). “Electron-irradiation induced phase transformation in La1/3Zr2(PO4)3: La3+ displacement in a preserved NASICON framework,” J. Solid State Chem. 179, 27142720.Google Scholar
Delmas, C., Viala, J. C., Olazcuaga, R., Le Flem, G., Hagenmuller, P., Cherkaoui, F., and Brochu, R. (1981). “Ionic conductivity in Nasicon-type phases Na1+xZr2−x Lx(PO4)3 (L = Cr, In, Yb),” Solid State Ion. 3/4, 209214.Google Scholar
Derouet, J., Beaury, L., Porcher, P., Olazcuaga, R., Dance, J. M., Le Flem, G., El Bouari, A., and El Jazouli, A. (1999). “A new NASICON-type phosphate: Co0.5Ti2(PO4)3 II. Simulation of optical and magnetic properties,” J. Solid State Chem. 143, 230238.Google Scholar
El Bouari, A., El Jazouli, A., Dance, J. M., Le Flem, G., Olazcuaga, R. (1994). “A New NASICON-Like Phosphate Co0,5Ti2(PO4)3 ”, Adv. Mater. Res. 1–2, 173176.Google Scholar
Hans, W. and Ulrich, M. (Eds.) (2004). International Tables for Crystallography Vol. A1: Symmetry Relation between Space Group (Kluwer Academic Publishers, Dordrecht/Boston/London), 1th ed., p. 286; 310.Google Scholar
Husson, E., Genet, F., Lachgar, A., and Piffard, Y. (1988). “The vibrational spectra of some antimony phosphates,” J. Solid State Chem. 75, 305312.Google Scholar
Junaid Bushiri, M., Antony, C. J., and Aatiq, A. (2008). “Raman and FTIR studies of the structural aspects of NASICON-type crystals; AFeTi(PO4)3 (A = Ca, Cd),” J. Phys. Chem. Solids 69, 19851989.CrossRefGoogle Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. 23, 447452.Google Scholar
Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley–Interscience, New York), 4th ed., p. 138.Google Scholar
Olazcuaga, R., Dance, J. M., Le Flem, G., Derouet, J., Beaury, L., Porcher, P., El Bouari, A., and El Jazouli, A. (1999). “A new NASICON-type phosphate Co0.5Ti2(PO4)3: I. Elaboration, optical and magnetic properties,” J. Solid State Chem. 143, 224229.Google Scholar
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., and Goodenoogh, J. B. (1997). “Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation,” J. Electrochem. Soc. 144(8), 25812586.Google Scholar
Pikl, R., de Waal, D., Aatiq, A., and El Jazouli, A. (1998). “Vibrational spectra and factor group analysis of Mn(0.5+x)Ti(2−2x)Cr2x(PO4)3 {0≤x≤0.50},” Vibr. Spectrosc. 16, 137143.Google Scholar
Rodriguez-Carvajal, J. (1997). Fullprof, Program for Rietveld refinement (Laboratoire Léon Brillouin (CEA-CNRS), Saclay, France).Google Scholar
Roy, R., Vance, E. R., and Alamo, J. (1982). ” [NZP], A new radiophase for ceramic nuclear waste forms,” Mat. Res. Bull. 17, 585589.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751767.Google Scholar
Sudarsan, V., Muthe, K. P., Vyas, J. C., and Kulshreshtha, S. K. (2002). “PO4 3− tetrahedra in SbPO4 and SbOPO4: a 31P NMR and XPS study,” J. Alloys Compd. 336, 119123.CrossRefGoogle Scholar
Woodcock, D. A., Lightfoot, P., and Smith, R. I. (1999). “Powder neutron studies of three low thermal expansion in the NZP family: K0.5Nb0.5Ti1.5(PO4)3, BaTi2(PO4)3 and Ca0.25Sr0.25Zr2(PO4)3 ,” J. Mater. Chem. 9, 26312636.Google Scholar
Zhao, Y., Wei, Z., Pang, Q., Wei, Y., Cai, Y., Fu, Q., Du, F., Sarapulova, A., Ehrenberg, H., Liu, B., and Chen, G. (2017). “NASICON-type Mg0.5Ti2(PO4)3 negative electrode material exhibits different electrochemical energy storage mechanisms in na-ion and li-ion batteries,” ACS Appl. Mater. Interfaces 9(5), 47094718.Google Scholar
Supplementary material: File

Aatiq supplementary material

Aatiq supplementary material 1

Download Aatiq supplementary material(File)
File 13.5 KB