Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T09:14:55.234Z Has data issue: false hasContentIssue false

Standard X-Ray Diffraction Powder Patterns of Fourteen Ceramic Phases

Published online by Cambridge University Press:  10 January 2013

Winnie Wong-Ng
Affiliation:
Ceramics Division, National Bureau of Standards, Gaithersburg, Maryland 20899, U.S.A.
Howard F. McMurdie
Affiliation:
Ceramics Division, National Bureau of Standards, Gaithersburg, Maryland 20899, U.S.A.
Boris Paretzkin
Affiliation:
Ceramics Division, National Bureau of Standards, Gaithersburg, Maryland 20899, U.S.A.
Camden R. Hubbard
Affiliation:
Ceramics Division, National Bureau of Standards, Gaithersburg, Maryland 20899, U.S.A.
Alan L. Dragoo
Affiliation:
Ceramics Division, National Bureau of Standards, Gaithersburg, Maryland 20899, U.S.A.

Extract

The following fourteen reference patterns of carbide, nitride, telluride, and oxide ceramics are reported. Included in the fourteen reference patterns are data for three high Tc superconducting oxide related phases (Ba2CuO3, CuSrO2, and Ba2Cu3YO6). The general methods of producing these X-ray powder diffraction reference patterns are described in this journal, Vol. 1, No. 1, pg. 40 (1986).

Samples were mixed with one or two internal standards: silicon (SRM640a), silver, tungsten, or fluorophlogopite (SRM675). Expected 2θ values for these internal standards are specified in the methods described (ibid.). Data were measured with a computer controlled diffractometer. The POWDER-PATTERN system of computer programs was used to locate peak positions, to calibrate the patterns, and to perform variable indexing and least-squares cell refinement. A check on the overall internal consistency of the data was also provided by a computer program.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1.Teske, von Chr. L., and Müller-Buschbaum, H. (1969). Z. Anorg. Allg. Chem., 371, 325.CrossRefGoogle Scholar
2.Teske, von Chr. L., and Müller-Buschbaum, H. (1970) Z. Anorg. Allg. Chem., 379, 234.CrossRefGoogle Scholar
1.Santoro, A., Miraglia, S., Beech, F., Sunshine, S. A. and Murphy, D. W., (1987). Mat. Res. Bull., 22, 1007.CrossRefGoogle Scholar
1.Townes, W., Fang., J. and Perrotta, A. (1967). Z. Kristallgr. 125, 437.CrossRefGoogle Scholar
1.Oftedal, I. (1927). Z. Phys. Chem. (Leipzig), 128, 154.Google Scholar
2.Swanson, H. E., Morris, M. C., and Evans, E. E. (1966). Nat. Bur. Stand. (U.S.) Monogr. 25, 4, 50.Google Scholar
1.Wahlstrom, E., and Marinder, B-O. (1977). Inorg. Nucl. Chem. Lett., 13, 559.CrossRefGoogle Scholar
2.Husson, E., Repelin, Y., Dao, N. Q., and Brusset, H. (1977). Mater. Res. Bull., 12, 1199.CrossRefGoogle Scholar
3.Felten, E.J.J. Inorg. Nucl. Chem. (1967) 29, 1168.CrossRefGoogle Scholar
1.Teske, C. L., and Müller-Buschbaum, H. K. (1970). Z. Anorg. Allg. Chem., 379, 234.CrossRefGoogle Scholar
1.Cotter, P.G., and Kohn, J.A. (1954). J. Am. Ceram. Soc., 37, 415.CrossRefGoogle Scholar
1.Wold, A., and Croft, C. (1959). J. Phys. Chem., 63, 447.CrossRefGoogle Scholar
2.Geller, S., and Wood, E. A. (1956). Acta Crystallogr., 9, 563.CrossRefGoogle Scholar
1.Eibschütz, M. (1965). Acta Crystallogr. 19, 337.CrossRefGoogle Scholar
1.Galasso, F. and Pyle, J. (1963). J. Phys. Chem., 67, 1561.CrossRefGoogle Scholar
1.Galasso, F. and Pyle, J. (1963). J. Phys. Chem., 67, 1561.CrossRefGoogle Scholar
1.Brauer, G., and Zapp, K. H. (1954). Z. Anorg. Allg. Chem., 277 129.CrossRefGoogle Scholar
1.Waburg, M., and Müller-Buschbaum, H. (1984). Z. Anorg. Allg. Chem., 508, 55.CrossRefGoogle Scholar
2.Durand, B., and Paris, J. M. (1976) C. R. Seances Acad. Sci., Ser. C, 282, 591.Google Scholar
3.Bayer, G. (1962). Ber. Dtsch. Keram. Ges., 39, 535.Google Scholar