Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T07:07:15.907Z Has data issue: false hasContentIssue false

Routine (an)isotropic crystallite size analysis in the double-Voigt approximation done right?

Published online by Cambridge University Press:  13 March 2017

D. Ectors*
Affiliation:
Mineralogy, GeoZentrum Nordbayern, University of Erlangen-Nuernberg (FAU), Erlangen 91054, Bavaria, Germany
F. Goetz-Neunhoeffer
Affiliation:
Mineralogy, GeoZentrum Nordbayern, University of Erlangen-Nuernberg (FAU), Erlangen 91054, Bavaria, Germany
J. Neubauer
Affiliation:
Mineralogy, GeoZentrum Nordbayern, University of Erlangen-Nuernberg (FAU), Erlangen 91054, Bavaria, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

In this study, the application of (an)isotropic size determination using a recently proposed model for the double-Voigt approach is demonstrated and validated against line profile simulations using the Whole Powder Pattern Modelling approach. The fitting of simulated line profiles demonstrates that the attained crystallite sizes and morphologies are in very reasonable agreement with the simulated values and thus demonstrate that even in routine application scenarios credible size and morphology information can be obtained using the double-Voigt approximation. The aim of this contribution is to provide a comprehensive introduction to the problem, address the practical application of the developed model, and discuss the accuracy of the double-Voigt approach and derived size parameters. Mathematical formulations for the visualization of modeled morphologies, supporting the application of the recently developed macros, are additionally provided.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balić Žunić, T. and Dohrup, J. (1999). “Use of an ellipsoid model for the determination of average crystallite shape and size in polycrystalline samples,” Powder Diffr. 14(3), 203207.CrossRefGoogle Scholar
Balzar, D. and Ledbetter, H. (1993). “Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks,” J. Appl. Crystallogr. 26, 97103.Google Scholar
Barr, A. H. (1981). “Superquadrics and angle-preserving transformations,” IEEE Comput. Graph. 1(1), 1123.Google Scholar
Bertaut, E. (1949a). “Signification de la dimension crystalline mesurée d'après la largeur de raie Debye-Scherrer,” C. R. Acad. Sci. 228, 187189.Google Scholar
Bertaut, E. (1949b). “Étude aux rayons X de la répartition des dimensions des cristallites dans une poudre crystalline,” C. R. Acad. Sci. 228, 492494.Google Scholar
Cheary, R. and Coelho, A. (1992). “A fundamental parameters approach to X-ray line-profile fitting,” J. Appl. Crystallogr. 25, 109121.Google Scholar
Ectors, D. (2016). Advances in the analysis of cementitious reactions and hydrate phases (PhD thesis). University of Erlangen-Nuernberg (FAU), available online at: https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/7174 Google Scholar
Ectors, D., Goetz-Neunhoeffer, F., and Neubauer, J. (2015a). “A generalized geometric approach to anisotropic peak broadening due to domain morphology,” J. Appl. Crystallogr. 48, 189194.CrossRefGoogle Scholar
Ectors, D., Goetz-Neunhoeffer, F., and Neubauer, J. (2015b). “Domain size anisotropy in the double-Voigt approach: an extended model,” J. Appl. Crystallogr. 48, 19982001. DOI: 10.1107/S1600576715018488/ CrossRefGoogle Scholar
Gielis, J. (2003). “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90(3), 333338.CrossRefGoogle ScholarPubMed
Henderson, D. M. and Gutowsky, H. S. (1962). “A nuclear magnetic resonance determination of the hydrogen positions in Ca(OH)2 ,” Am. Mineral. 47, 12311251.Google Scholar
Hurle, K., Neubauer, J., and Goetz-Neunhoeffer, F. (2016). “Influence of Sr2+ on calcium-deficient hydroxyapatite formation kinetics and morphology in partially amorphized α-TCP,” J. Am. Ceram. Soc. 99(3), 10551063.Google Scholar
Langford, J. I. (1980). “Accuracy of crystallite size and strain determined from the integral breadth of powder diffraction lines,” Natl. Bur. Stand. Spec. Publ. 567, 255269.Google Scholar
Langford, J. I. and Wilson, A. J. C. (1978). “Scherrer after sixty years: a survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr. 11, 102113.Google Scholar
Langford, J. I., Louër, D., and Scardi, P. (2000). “Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting,” J. Appl. Crystallogr. 33, 964974.Google Scholar
Leonardi, A., Leoni, M., Siboni, S., and Scardi, P. (2012). “Common volume functions and diffraction line profiles of polyhedral domains,” J. Appl. Crystallogr. 45, 11621172.Google Scholar
Leoni, M., Confente, T., and Scardi, P. (2006). “PM2K: a flexible program implementing Whole Powder Pattern Modelling,” Z. Kristallogr. Suppl. 23, 249254.CrossRefGoogle Scholar
Popa, N. C. and Balzar, D. (2002). “An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions,” J. Appl. Crystallogr. 35, 338346.Google Scholar
Scardi, P. (2008). “Recent advances in whole powder pattern modelling,” Z. Kristallogr. Suppl. 27, 101111.CrossRefGoogle Scholar
Scardi, P. and Leoni, M. (2002). “Whole powder pattern modelling,” Acta Crystallogr. A58, 190200.Google Scholar
Scherrer, P. (1918). “Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachr. Göttinger Ges. 1918, 98100.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Stokes, A. R. (1948). “A numerical Fourier-analysis method for the correction of widths and shapes of lines on X-ray powder photographs,” Proc. Phys. Soc. Lond. 61(4), 382391.CrossRefGoogle Scholar
Tournarie, M. (1956a). “Utilisation du deuxième moment comme critère d’élargissement des raies Debye Scherrer. Elimination de l'effet instrumental,” C. R. Acad. Sci. 242, 20162018.Google Scholar
Tournarie, M. (1956b). “Utilisation du deuxième moment comme critère d’élargissement des raies Debye Scherrer. Signification physique,” C. R. Acad. Sci. 242, 21612164.Google Scholar
von Laue, M. (1936). “Die äußere Form der Kristalle in ihrem Einfluß auf die Interferenzerscheinungen an Raumgittern,” Ann. Phys. (Leipzig) 26, 5568.Google Scholar
Wilson, A. J. C. (1962a). “Variance as a measure of line broadening,” Nature 193, 568569.CrossRefGoogle Scholar
Wilson, A. J. C. (1962b). Chapter IV: Powder Patterns of Small Crystals in: X-Ray Optics (Methuen, London), 2nd ed.Google Scholar