No CrossRef data available.
Article contents
Rietveld refinement of X-ray powder diffraction data of Ca0.925Ce0.075Mn0.9Fe0.1O3 polycrystalline material
Published online by Cambridge University Press: 28 August 2018
Abstract
Polycrystalline Ca0.925Ce0.075Mn0.9Fe0.1O3 were prepared by sol-gel reaction at 1073 K. The compound was analyzed by a powder X-ray diffraction technique and found to be in single phase. The unit-cell parameters and atomic positions were refined using General Structure Analysis to an orthorhombic structure with space group Pnma (#62) a = 5.281 90 (33) Å, b = 7.4968 (45) Å, and c = 5.302 90 (32) Å.
- Type
- New Diffraction Data
- Information
- Copyright
- Copyright © International Centre for Diffraction Data 2018
References
Dai, N., Feng, J., Wang, Z., Jiang, T., Sun, W., Qiao, J., and Sun, K. (2013). “Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5−xNixMo0.5O6−δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs”, J. Mater. Chem. A 45, 14147–14153.Google Scholar
Flahaut, D., Mihara, T., Funahashi, R., Nabeshima, N., Lee, K., Ohta, H., and Koumoto, K. (2006). “Thermoelectrical properties of A-site substituted Ca1−x Rex MnO3 system”, J. Appl. Phys. 100, 084911–1.Google Scholar
Larson, A. C., and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National laboratory.Google Scholar
Liu, X. J., Li, Z. Q., Wu, P., Bai, H. L., and Jiang, E. Y. (2007). “The effect of Fe doping on structural, magnetic and electrical transport properties of CaMn1−xFexO3 (x = 0–0.35)”, Solid State Commun. 142, 525–530.Google Scholar
Momma, K., and Izumi, F. (2013). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”, J. Appl. Crystallogr. 44, 1272–1276.Google Scholar
Nandan, K. R., and Ruban Kumar, A. (2016) “Electrical properties of Ca0.925Ce0.075Mn1−xFexO3 (x = 0.1–0.3) prepared by sol–gel technique”, J. Mater. Sci.: Mater. Electron. 27, 13179–13191.Google Scholar
Paszkowicz, W., and Piętosa, J. (2007). “On the orthorhombic distortion of CaMnO3−δ,” Institute of Physics, Polish Academy of Sciences, al. Lotnikow, 32, 02–668.Google Scholar
Paszkowicz, W., Piętosa, J., Woodley, S. M., Dłużewski, P. A., Kozłowski, M., and Martin, C. (2010). “Lattice parameters and orthorhombic distortion of CaMnO3”, Powder Diffr. 25, 46–59.Google Scholar
Singh, B. (2015). “Structural, transport, magnetic and magnetoelectric properties of CaMn1−xFexO3−δ (0.0 ≤ x ≤ 0.4)”, RSC Adv. 5, 39938–39945.Google Scholar
Wang, Y., Sui, Y., and Su, W. (2008). “High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R = La, Pr, …, Yb)”, J. Appl. Phys. 104, 093703.Google Scholar
Zhao, S, Zheng, J., Jiang, F., Song, Y., Sun, M., and Song, X. (2015). “Co-precipitation synthesis and microwave absorption properties of CaMnO3 doped by La and Co”, J. Mater. Sci.: Mater. Electron. 11, 8603–8608.Google Scholar