Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T10:18:55.983Z Has data issue: false hasContentIssue false

Re-determining the Nowotny chimney–ladder structure VGe1.82 from powder diffraction data

Published online by Cambridge University Press:  01 March 2012

Hanna Lind*
Affiliation:
Inorganic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
Magnus Boström
Affiliation:
Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The Nowotny chimney–ladder compound VGe1.82 was redetermined from powder diffraction data and modelled with the incommensurately modulated composite approach. The dimensions of the tetragonal unit subcells are a=5.9015(3) Å, cGe=2.6916(2)Å, and cV=4.9080(2)Å and the one-dimensional modulation vectors are qGe=0.45159(1)[001]* and qV=0.17656(1)[001]*. Comparison is made with a previous reported commensurate approximation of the structure with a 31-fold cGe axis.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boström, M., Lind, H., Lidin, S., Niewa, R., and Grin, Y. (unpublished). Synthesis, crystal structure, phase relations and ELF analysis of the novel Nowotny chimney ladder compound ZrBi 1.62.Google Scholar
Elder, I., Lee, C.-S., and Kleinke, H. (2002). “Zr 11Sb18: A new binary antimonide exhibiting an unusual Sb atom network with nonclassical Sb-Sb bonding,” Inorg. Chem.INOCAJ 41, 538545.Google Scholar
Fredrickson, D. C., Lee, S., and Hoffmann, R. (2004a). “The Nowotny chimney ladder phases: Whence the 14 electron rule?Inorg. Chem.INOCAJ 43, 61596167.Google Scholar
Fredrickson, D. C., Lee, S., and Hoffmann, R., and Lin, J. (2004b). “The NCL phases: Following the cpseudo clue toward an explanation of the 14 electron rule,” Inorg. Chem.INOCAJ 43, 61516158.CrossRefGoogle Scholar
Holleck, H., Nowotny, H., and Benesovsky, F. (1963). “Untersuchungen im system vanadin-germanium,” Monatsch. Chem.MOCMB7 94, 497501.CrossRefGoogle Scholar
Jeitschko, W. and Parthé, E. (1967). “The crystal structure of Rh17Ge22, an example of a new kind of electron compound,” Acta Crystallogr.ACCRA9 22, 417430.CrossRefGoogle Scholar
Kleinke, H. (2001). “A three-dimensional extended Sb network in the metallic antimonide (M,Ti)5Sb8 (M=Zr,Hf,Nb,Mo),” Inorg. Chem.INOCAJ 40, 95100.Google Scholar
Pearson, W. B. (1970). “Phases with Nowotny chimney-ladder structures considered as ‘electron’ phases,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR B26, 10441046.Google Scholar
Pécheur, P. and Toussaint, G. (1991). “Electronic structure and bonding of the Nowotny chimney-ladder compound Ru 2Si3,” Phys. Lett. APYLAAG 160, 193196.Google Scholar
Petricek, V., Dusek, M., and Palatinus, L. (2000). Jana2000. The Crystallographic Computing System (Institute of Physics, Praha, Czech Republic).Google Scholar
Rohrer, F. E., Lind, H., Eriksson, L., Larsson, A.-K., and Lidin, S. (2000). “On the question of commensurability-the Nowotny chimney-ladder structures revisited,” Z. Kristallogr.ZEKRDZ 215, 650660.Google Scholar
Rohrer, F. E., Lind, H., Eriksson, L., Larsson, A.-K., and Lidin, S. (2001). “Incommensurately modulated Nowotny Chimney-ladder phases: Cr 1−xMoxGe∼1.75 with x=0.65 and 0.84,” Z. Kristallogr.ZEKRDZ 216, 190198.Google Scholar
Völlenkle, H., Wittmann, A., and Nowotny, H. (1964). “Untersuchungen an germaniden der übergangsmetalle V, Cr, Mo und Mn,” Monatsch. Chem.MOCMB7 95, 15441549.CrossRefGoogle Scholar
Völlenkle, H., Wittmann, A., and Nowotny, H. (1966). “Abkömmlinge der TiSi 2-struktur-ein neues bauprinzip,” Monatsch. Chem.MOCMB7 97, 506516.CrossRefGoogle Scholar
Völlenkle, H., Preisinger, A., and Nowotny, H., and Wittmann, A. (1967). “Die kristallstrukturen von Cr 11Ge19, Mo13Ge23 und V17Ge31,” Z. Kristallogr.ZEKRDZ 124, 925.CrossRefGoogle Scholar
Yamamoto, A. (1993). “Determination of composite crystal structures and superspace groups,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ10.1107/S0108767393004404, A49, 831846.CrossRefGoogle Scholar