Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T02:48:30.610Z Has data issue: false hasContentIssue false

Powder XRD study of Ba4Eu3F17: A new anion rich fluorite related mixed fluoride

Published online by Cambridge University Press:  05 March 2012

S. N. Achary
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
S. J. Patwe
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
A. K. Tyagi*
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
*
a)Author to whom correspondence should be addressed. Fax: 0091-22-550 5151/551 9613. Electronic mail: [email protected]

Abstract

The compound Ba4Eu3F17 was prepared by heating pre-dried BaF2 and EuF3 (4:3) at 800 °C for 8 h in static vacuum. The colorless polycrystalline product obtained was characterized by Rietveld refinement of the observed powder diffraction data with a starting model of Ba4Y3F17. The title compound Ba4Eu3F17 crystallizes in rhombohedral lattice with lattice parameters, a=11.1787(4) and c=20.5789(10) Å, Z=3 (Space group R 3, No. 148). The Ba4Eu3F17 structure can be described as an ordered anion-rich fluorite type structure with the formation of Eu6F37 clusters. There are two crystallographically distinct Ba (CN=10, 11) and one distinct Eu (CN=8). The typical Ba(1)–F, Ba(2)–F, and Eu–F bond lengths range from 2.56 to 2.83 Å, 2.54 to 3.25 Å, and 2.24 to 2.49 Å, respectively. The salient feature of the structure is that the EuF8 polyhedra share their corner to form a cubo-octahedron of fluoride ions. The cubic BaF8 polyhedra of BaF2 are modified to Ba(1)–F10 and Ba(2)–F11 polyhedra in this structure. The cubo-octahedron encloses extra fluorine F(8) inside it.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achary, S. N., Patwe, S. J., and Tyagi, A. K. (1999a). “Synthesis and characterization of mixed fluorides Y1−xCa2+1.5xF7 (−1.33≤x≤1.0),Mater. Res. Bull. MRBUAC 34, 20932100. mrb, MRBUAC Google Scholar
Achary, S. N., Mohapatra, S., Patwe, S. J., and Tyagi, A. K. (1999b). “Synthesis and characterization of mixed fluorides Y1−xBa2+1.5xF7 (−1.33<x<1.0),Mater. Res. Bull. MRBUAC 34, 15351543. mrb, MRBUAC Google Scholar
Achary, S. N., Patwe, S. J., and Tyagi, A. K. (2001). “Synthesis and characterization of Ba1−xEuxF2+x (0.00≤x≤1.00),” Mater. Res. Bull. (to be published).Google Scholar
Bertaut, E. F., Le Fur, Y., and Aleonard, S. (1989). “The use of similarity operators for lattice super lattice relations. Part II. Application to rhombohedral fluorite related structures,” Z. Kristallogr. ZEKRDZ 87, 279304. zek, ZEKRDZ Google Scholar
Bevan, D. J. M., Ness, S. E., and Taylor, M. R. (1988). “On crystal chemistry of Ca2YbF7 and other closely-related structures with cubo-octahedral anion cluster,” Eur. J. Solid State Inorg. Chem. EJSCE5 25, 527534. ess, EJSCE5 Google Scholar
Greis, O. (1977). “New phases in the system YbF2-YbF3,Z. Anorg. Allg. Chem. ZAACAB 430, 175198. zaa, ZAACAB Google Scholar
Greis, O. and Haschke, J. M. (1982). “Rare earth fluorides,” in Handbook on the Phys. and Chem. of Rare Earths, edited by K. A. Gschneidner and L. Eyring (North-Holland, Amsterdam), p. 387.Google Scholar
Hoppe, R. (1979). “Effective coordination number and mean fictive ionic radiu,” Z. Kristallogr. ZEKRDZ 150, 23. zek, ZEKRDZ CrossRefGoogle Scholar
Jakkal, V. S., “POWDERX, a least square refinement program for the unit cell parameters,” Private Comm., BARC, Mumbai, India.Google Scholar
Kaminskii, A. A. (1995). “Today and Tomorrow of laser crystal physics,” Phys. Status Solidi PSSABA 148, 979. psa, PSSABA CrossRefGoogle Scholar
Keiser, V. M.and Greis, O. (1980). “Preparation and properties of Fluorite related super-structure phases Ba4RE3F17… ,Z. Anorg. Allg. Chem. ZAACAB 469, 164171. zaa, ZAACAB Google Scholar
Kohler, J., Achary, S. N., and Tyagi, A. K. (2002). “Crystal structure of Pb4Y3F17: A new fluorite related anion-rich fluoride,” Z. Krist. ZEKRDZ 217, 23. zek, ZEKRDZ Google Scholar
Maksimov, B. A., Solans, Kh., Dudka, , Genkina, A. P. E. A., Font-Badria, M., Buchinskaya, I. I., Loshmanov, A. A., Golubev, A. M., Simonov, V. I., Font-Altaba, M., and Sobolev, B. P. (1996). “Fluorite-matrix-based Ba4R3F17 (R=Y,Yb) crystal structure….,” Crystallogr. Rep. CYSTE3 41, 5664. cry, CYSTE3 Google Scholar
Patwe, S. J., Achary, S. N., and Tyagi, A. K. (2001). “Synthesis and characterization of Y1−xPb2+1.5xF7 (−1.33≤x≤1.0),Mater. Res. Bull. MRBUAC 36, 597605. mrb, MRBUAC CrossRefGoogle Scholar
Reau, J. M. and Grannec, J. (1985). “Fast fluorine ion conduction,” in Inorganic Solid Fluorides, Chem and Phys., edited by P. Hagenmuller (Academic, London), pp. 423–469.Google Scholar
Sobolev, B. P., Seiranian, K. B., Garashina, L. S., and Fedorov, P. P. (1979). “Phase diagrams of the SrF2-(Y,Ln)F3 systems, Part 1. X ray characteristics of phases,” J. Solid State Chem. JSSCBI 28, 5158. jss, JSSCBI CrossRefGoogle Scholar
Sobolev, B. P. (1992). “Multi-component fluoride single crystals (Current status of their synthesis and prospects),” Growth of Crystal ZZZZZZ 18, 197211.CrossRefGoogle Scholar
Tyagi, A. K.and Kohler, J. (2001). “Preparation and Structural elucidation of the new anion-excess fluorite variant Ba4Er3F17,Solid State Science SSSCFJ 3, 689. a8m, SSSCFJ CrossRefGoogle Scholar
Young, R. A. (1994). “Rietveld analysis program DBWS-9411, Release 15-12-94.”Google Scholar