Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:27:10.708Z Has data issue: false hasContentIssue false

A powder X-ray diffraction study of lead chloride oxalate Pb2Cl2(C2O4): ab initio structure determination and thermal behavior

Published online by Cambridge University Press:  06 March 2012

Chaouki Boudaren
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR 6511 CNRS), Université de Rennes, Institut de Chimie, Avenue du Général Leclerc, 35042 Rennes, France
Jean-Paul Auffrédic
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR 6511 CNRS), Université de Rennes, Institut de Chimie, Avenue du Général Leclerc, 35042 Rennes, France
Michèle Louër
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR 6511 CNRS), Université de Rennes, Institut de Chimie, Avenue du Général Leclerc, 35042 Rennes, France
Daniel Louër*
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR 6511 CNRS), Université de Rennes, Institut de Chimie, Avenue du Général Leclerc, 35042 Rennes, France
*
b)Author to whom correspondence should be addressed; Tel.: (33) 2 23 23 62 48; Fax: (33) 2 99 38 34 87; electronic mail: [email protected]

Abstract

Mixed lead chloride oxalate, Pb2Cl2(C2O4), has been obtained in a polycrystalline form in the course of a study on precursors of nanocrystalline PZT-type oxides. Its crystal structure has been solved ab initio from powder diffraction data collected using a monochromatic radiation from a conventional X-ray source. The symmetry is monoclinic, space group C2/m, the cell dimensions are a=5.9411(3) Å, b=5.8714(4) Å, c=9.4212(4) Å, β=95.232(4)° and Z=2. The structure consists of a stacking of complex double sheets, built from lead polyhedra, parallel to (001) and connected together through oxalate groups. The lead atom is nine-fold coordinated by four O atoms from one bidentate and two monodentate oxalate groups and five Cl atoms. The polyhedron can be described as a highly distorted square antiprism mono-capped by a Cl atom. The thermal behavior of lead chloride oxalate, in vacuum and in air, is carefully described from temperature-dependent powder diffraction and thermogravimetric measurements. It is shown that reaction pathways are complicated by the identification of various oxide chloride phases.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., and Polidori, G. (1995). “On the number of statistically independent observations in a powder diffraction pattern,” J. Appl. Crystallogr. JACGAR 28, 738744. acr, JACGAR CrossRefGoogle Scholar
Altomare, A., Burla, M. C., Camalli, M., Carrozzini, G. L., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., and Rizzi, R. (1999). “EXPO: a program for full powder pattern decomposition and crystal structure solution,” J. Appl. Crystallogr. JACGAR 32, 339340. acr, JACGAR CrossRefGoogle Scholar
Audebrand, N., Auffrédic, J. P., and Louër, D. (1997). “Thermal decomposition of cerous ammonium nitrate tetrahydrate studied with temperature-dependent X-ray powder diffraction and thermal analysis,” Thermochim. Acta THACAS 193, 6576. tha, THACAS CrossRefGoogle Scholar
Audebrand, N., Auffrédic, J. P., Louër, M., Guillou, N., and Louër, D. (1996). “Temperature-dependent X-ray diffraction and crystal structure of CeRb2(NO3)5⋅4H2O,Solid State Ionics SSIOD3 84, 323333. ssi, SSIOD3 CrossRefGoogle Scholar
Azzopardi, M., Galerie, A., and Besson, J. (1972). “Oxydation du plomb par l’oxygène et le monoxyde d’azote,” Bull. Soc. Chim. Fr. BSCFAS 10, 36843686. bsc, BSCFAS Google Scholar
Baroni, A. (1934). “Sugli ossialogenuri di piombo,” Atti R. Accad. Naz. Lincei, Mem. Cl. Sci. Fis., Mat. Nat. RLAMAU 20, 384390. 9zy, RLAMAU Google Scholar
Boldyrev, V. V., Nev’yantsev, I. S., Mikhailov, Yu. I., and Khairetdinov, E. F. (1970). “The mechanism of the thermal decomposition of oxalates,” Kinet. Katal. KNKTA4 11, 367373. knk, KNKTA4 Google Scholar
Boudaren, C., Auffrédic, J.-P., Bénard-Rocherullé, P., and Louër, D. (2001). “Structure determination from powder diffraction data and thermal behaviour of layered lead nitrate oxalate hydrate, Pb2(NO3)2(C2O4)⋅2H2O,” Solid State Sciences 3, 847–858.CrossRefGoogle Scholar
Boudaren, C., Auffrédic, J.-P., Louër, M., and Louër, D. (2000). “Synthesis, structure determination from powder diffraction data, and thermal behavior of lead zirconium oxalate hydrate Pb2Zr(C2O4)4⋅nH2O,Chem. Mater. CMATEX 12, 23242333. cma, CMATEX CrossRefGoogle Scholar
Boultif, A., and Louër, D. (1991). “Indexing of powder diffraction patterns of low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993. acr, JACGAR CrossRefGoogle Scholar
Gopalakrishna Murthy, H. S., Subba Rao, M., and Narayanan Kutty, T. R. (1976). “Thermal decomposition of titanyl oxalates—III Lead titanyl oxalate,” J. Inorg. Nucl. Chem. JINCAO 38, 417419. jin, JINCAO CrossRefGoogle Scholar
Grimes, S. M., Johnston, S. R., and Abrahams, I.(1995). “Characterisation of the predominant low-pH lead(II)-hydroxo cation, Pb4(OH)4]4+; crystal structure of [Pb4(OH)4][NO3]4 and the implications of basic salt formation on the transport of lead in the aqueous environment,” J. Chem. Soc. Dalton Trans. 2081–2086.Google Scholar
Harrisson, P. G., and Holt, G.(1987). “Differential thermal analysis, thermogravimetric analysis, and X-ray powder diffraction study of the solid-state reactions between lead(II) halides and alkali metal carbonates,” Main Group Metal Chem. 10, 57–68.Google Scholar
Hope, G. A. (1980). “The influence of oxygen pressure on lead oxidation kinetics,” Aust. J. Chem. AJCHAS 33, 471480. ajd, AJCHAS CrossRefGoogle Scholar
International Centre for Diffraction Data, Newtown Square, PA.Google Scholar
Kutzke, H., Klapper, H., Merlino, S., Paser, M., Perchiazzi, N., and Eggert, G. (2000). “The crystal structure of barstowite, Pb4Cl6(CO3)⋅H2O, determined on crystals from Etruscan slags and from a Late-Hellenistic shipwreck,” Z. Kristallogr. ZEKRDZ 215, 110113. zek, ZEKRDZ CrossRefGoogle Scholar
Langford, J. I., and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys. RPPHAG 59, 131234. rpp, RPPHAG CrossRefGoogle Scholar
Louër, D. (1998). “Advances in powder diffraction analysis,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 54, 922933. acf, ACACEQ CrossRefGoogle Scholar
Louër, D., and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr. JACGAR 21, 430437. acr, JACGAR Google Scholar
Li, Y., Krivovichev, S. V., and Burns, P. C. (2000). “Crystal chemistry of lead oxide hydroxide nitrates. I. The crystal structure of [Pb6O4](OH)(NO3)(CO3),J. Solid State Chem. JSSCBI 153, 365370. jss, JSSCBI CrossRefGoogle Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Crystallogr. JACGAR 32, 3650. acr, JACGAR CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS * AIDS80: a Fortran program for crystallographic data evaluation,” Natl Bur. Stand. (U.S.) Tech. Note No. 1141. [NBS * AIDS83 is an expanded version of NBS * AIDS80.]Google Scholar
Pertlik, F. (1988). “The single chain arsenites Pb(AsO2)Cl and Pb2(AsO2)3Cl. Preparation and structure investigation,” Z. Kristallogr. ZEKRDZ 184, 191201. zek, ZEKRDZ Google Scholar
Plévert, J., Auffrédic, J.-P., Louër, M., and Louër, D. (1989). “Time-resolved study by X-ray powder diffraction with position-sensitive detector: rate of the β-Cs2CdI4 transformation and the effect of preferred orientation,” J. Mater. Sci. JMTSAS 24, 19131918. jmt, JMTSAS CrossRefGoogle Scholar
Podsiadlo, H. (1991). “Phase equilibria in the binary system PbO–PbCl2,J. Therm. Anal. JTHEA9 37, 613626. jta, JTHEA9 Google Scholar
Renaud, M., Poidatz, E., and Chaix, J. E. (1970). “Contribution a` l’étude des mélanges liquides PbCl2–PbO,Can. J. Chem. CJCHAG 48, 20612064. cnj, CJCHAG CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” Abstracts of the meeting Powder Diffraction, Toulouse, France, pp. 127–128. (FULLPROF is available at http://www-llb.cea.fr/fullweb/powder.htm).Google Scholar
Roisnel, T., and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum MSFOEP 378–381, 118123. msf, MSFOEP CrossRefGoogle Scholar
Ruer, R. (1906). “U¨ber bleioxychloride,” Z. Anorg. Chem. ZACMAH 49, 365383. zac, ZACMAH CrossRefGoogle Scholar
Steele, I. M., Pluth, J. J., and Richardson, J. (1997). “Crystal structure of tribasic lead sulfate (3PbO⋅PbSO4⋅H2O) by X-rays and neutrons: an intermediate phase in the production of lead acid batteries,” J. Solid State Chem. JSSCBI 132, 173181. jss, JSSCBI Google Scholar
Swanson, H. E., Morris, M. C., Evans, M. C., and Ulmer, L. (1964). “Standard X-ray diffraction powder patterns,” Monograph 25, Sect. 3, National Bureau of Standards, Washington, DC, p. 1.Google Scholar
Vos, A., Mullens, J., Yperman, J., Franco, D., and Van Poucke, L. C. (1993). “The preparation of PbTiO3 using the oxalate coprecipitation method,” Eur. J. Solid State Inorg. Chem. EJSCE5 30, 929941. ess, EJSCE5 Google Scholar
Young, R. A., and Wiles, D. B. (1982). “Profile shape functions in Rietveld refinements,” J. Appl. Crystallogr. JACGAR 15, 430438. acr, JACGAR CrossRefGoogle Scholar