Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T09:23:45.017Z Has data issue: false hasContentIssue false

Powder diffraction of sodalite in a multiphase ceramic used to immobilize radioactive waste

Published online by Cambridge University Press:  01 March 2012

S. M. Frank*
Affiliation:
Argonne National Laboratory-West, P.O. Box 2528, Idaho Falls, Idaho 83403-2528
T. L. Barber
Affiliation:
Argonne National Laboratory-West, P.O. Box 2528, Idaho Falls, Idaho 83403-2528
M. J. Lambregts
Affiliation:
Argonne National Laboratory-West, P.O. Box 2528, Idaho Falls, Idaho 83403-2528
*
a)Electronic mail: [email protected]

Abstract

The title compound, ∣Na6Li1.6K0.4Cl2∣[Al6Si6O24]‐SOD, is similar to sodalite proper, but the introduction of Li and K into the structure creates a reduction in unit-cell volume and additional collapse of the framework tetrahedra. Refinement of an X-ray powder diffraction pattern of a multiphase material yielded for sodalite a lattice parameter of 0.88427 (2) nm, an Al–O–Si bond angle of 137.9(3°), and Al–O and Si–O bond lengths of 0.1730(5) nm and 0.1620(5) nm, respectively. The angle of the unique Al–O–Si bond corresponds well with the 138° obtained by 29Si solid-state magic-angle-spinning nuclear magnetic resonance spectroscopy. This characterization is important since the compound constitutes an essential part of a radioactive waste form intended for a high-level waste repository.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benedict, R. W. and McFarlane, H. F. (1998). “EBR-II spent fuel treatment demonstration project status,” RadWaste, 2330.Google Scholar
Dempsey, M. J. and Taylor, D. (1980). “Distance least-squares modelling of the cubic sodalite structure and of the thermal expansion of Na8(Al6Si6O24)I2,” Phys. Chem. Miner.PCMIDU 6, 197208.CrossRefGoogle Scholar
Hassan, I. and Grundy, H. D. (1984). “The crystal structures of sodalite-group minerals,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768184001683 B40, 613.CrossRefGoogle Scholar
Henderson, C. M. B. and Taylor, D. (1978). “The thermal expansion of synthetic aluminosilicate-sodalites, Mx(Al6Si6O24)X2,” Phys. Chem. Miner.PCMIDU10.1007/BF00307576 2, 337347.CrossRefGoogle Scholar
ICDD (1995). “Powder diffraction file,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, Pennsylvania, 19073–3272.Google Scholar
Lambregts, M. J. and Frank, S. M. (2004). “Application of Vegard’s law to mixed cation sodalites: A simple method for determining stoichiometry,” TalantaTLNTA2 62, 627630.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (1986). GSAS, general structure analysis system, Los Alamos National Laboratory, Report No. LAUR86-748.Google Scholar
McMullan, R. K., Ghose, S., Haga, N., and Shomaker, V. (1996). “Sodalite, Na4Si3Al3O12Cl: Structure and ionic mobility at high temperatures by neutron diffraction,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768196004132 B52, 616627.CrossRefGoogle Scholar
Moschetti, T. L., Frank, S. M., and Johnson, S. G. (1999). “Environmental issues and waste management technologies in the ceramic and nuclear industries IV,” Ceram. Trans.CETREW 93, 261268.Google Scholar