Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T02:57:30.476Z Has data issue: false hasContentIssue false

Powder diffraction data for the intermetallic compounds RhAl2.63, IrAl2.75 and AuZn3

Published online by Cambridge University Press:  10 January 2013

K. Gotzmann
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174 Stuttgart, Germany
U. Burkhardt
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174 Stuttgart, Germany
M. Ellner
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, D-70174 Stuttgart, Germany
Yu. Grin
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70506 Stuttgart, Germany

Abstract

A significant feature of the atomic structure of the intermetallic compounds RhAl2.63 (Pearson-Parthé symbol cP(34-5) [notation according to Parthé et al. (1993)], space group P23), IrAl2.75 (cP(34-4), P23) and AuZn3 (cP32, Pmn) is the occurrence of icosahedral clusters. Least squares refined lattice parameters and powder diffraction data are reported for these homeotypic phases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J., and Rich, J. B. (1954). “The crystal structures of WAl 12, MoAl 12 and (Mn, Cr)Al 12,” Acta Crystallogr. 7, 813816.CrossRefGoogle Scholar
Akselrud, L.G., Grin, Yu.N., Zavalii, P.Yu., Pecharski, V.K., and Fundamenski, V.S. (1989). “CSD-universal program package for single crystal and/or powder structure data treatment,” Collected Abstracts of the Twelfth European Crystallographic Meeting, Moscow, p. 155.Google Scholar
Axler, K. M., Foltyn, E. M., Peterson, D. E., and Hutchinson, W. B. (1989). “Phase Investigation of the Al-Ir System,” J. Less-Common Met. 156, 213219.CrossRefGoogle Scholar
Bartscher, W., Boeuf, A., Caciuffo, R., Fournier, J. M., Kuhs, W. F., Rebizant, J., and Rustichelli, F. (1985). “Neutron Diffraction Study of β-UD 3 and β-UH 3,Solid State Commun. 53, 423426.CrossRefGoogle Scholar
Chaudhury, Z. A., and Suryanarayana, C. (1983). “Al 13X 4-Type Phases in Aluminium-Group VIII Metal Systems,” J. Less-Common Met. 91, 181187.CrossRefGoogle Scholar
Edshammar, L.-E. (1967a). “The Crystal Structure of Hexagonal Rh 2Al 5,Acta Chem. Scand. 21, 647651.CrossRefGoogle Scholar
Edshammar, L.-E. (1967b). “The Crystal Structure of IrAl 3,Acta Chem. Scand. 21, 11041105.CrossRefGoogle Scholar
Edshammar, L.-E. (1968). “The Crystal Structure of Rh 2Al 9 and Ir 2Al 9,Acta Chem. Scand. 22, 28222826.CrossRefGoogle Scholar
Esslinger, P., and Schubert, K. (1957). “Zur Systematik der Strukturfamilie des NiAs,” Z. Metallkd. 48, 126134.Google Scholar
Ferro, R., Capelli, R., Marazza, R., Delfino, S., and Borsese, A. (1968). “Alloys of Noble Metals with the Most Electropositive Elements. XIV. Micrographic and X-Ray Examination of the Aluminum-Iridium System,” Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. Rend. 5, 556563.Google Scholar
Grin, Yu., Burkhardt, U., Gotzmann, K., Ellner, M., and Peters, K. (1997) “The Crystal Structure of the Binary Iridium-Aluminum IrAl 2.75 and Rhodium-Aluminum RhAl 2.63 Phase,” Z. Kristallogr. 212, 439444.CrossRefGoogle Scholar
Günzel, E., and Schubert, K. (1958). “Kristallstruktur von AuZn 3(r),Z. Metallkd. 49, 234235.Google Scholar
Johnson, Q., Biel, T. J., and Leider, H. J. (1976). “Isotopic Shifts of the Unit Cell Constants of the α- and β- Tri-Hydrides of Uranium: UH 3, UD 3 and UT 3,J. Nucl. Mater. 60, 231233.CrossRefGoogle Scholar
Jung, W.-G., and Kleppa, O. J. (1992) “Standard Molar Enthalpies of MeAl (Me = Ru, Rh, Os, Ir),” Metall. Trans. B 23, 5356.CrossRefGoogle Scholar
Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L. (1990). Binary Alloy Phase Diagrams, ASM International (The Materials Information Society, Materials Park, OH 44073), Vol. 1.Google Scholar
Norbury, A.L. (1939). “On the Nature of Certain Intermetallic Lattices,” J. Inst. Met. 35, 353–378.Google Scholar
Okamoto, H., and Massalski, T. B. (1989). “The Au-Zn (Gold-Zinc) System,” Bull. Alloy Phase Diagrams 10, 5969.CrossRefGoogle Scholar
Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., and Gladyschevskii, R.E. (1993). TYPIX, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Springer-Verlag, Berlin), Vol. 2, p. 269.Google Scholar
Pearson, W. B. (1979). “The Gold-Zinc Equilibrium Diagram in the Region 55-88 At. % Zn,” J. Less-Common Met. 68,P9–P15.CrossRefGoogle Scholar
“Powder Diffraction File, Sets 1–46” (1996). International Center for Diffraction Data, Newton Square, PA 19073-3273.Google Scholar
Rundle, R. E. (1951). “The Hydrogen Positions in Uranium Hydride by Neutron Diffraction,” J. Am. Chem. Soc. 73, 41724174.CrossRefGoogle Scholar
Saldau, P. (1925). “Gleichgewicht im System Gold-Zink,” Z. Anorg. Chem. 141, 325–362.CrossRefGoogle Scholar
Schubert, K., Breimer, H., Burkhardt, W., Günzel, E., Haufler, R., Lukas, H. L., Vetter, H., Wegst, J., and Wilkens, M. (1957). “Einige strukturelle Ergebnisse an metallischen Phasen. II,” Naturwissenschaften 44, 229230.CrossRefGoogle Scholar
Villars, P. and Calvert, L.D. (1991). Pearson's Handbook of Intermetallic Phases, 2nd ed. (ASM International, Materials Park, OH).Google Scholar
Westgren, A., and Phragmen, G. (1925). “X-Ray Analysis of Copper-Zinc, Silver-Zinc and Gold-Zinc Alloys,” Philos. Mag. 50, 311341.CrossRefGoogle Scholar